Magic triangle

Magic triangle **Physics of** complex systems epitaxy, self organized growth exotic ground states and quasiparticles implantation, isotope purification phase and statistical atom and molecule manipulatio transformations nanolithography, nanoprinting complex dynamics beam and scanning probes

High tech/IT

Materials science

....

photonics (optoelectronics) **MEMS, NEMS** electronics, magnetoelectronics spintronics

SEMICONDUCTOR SPINTRONICS

Tomasz DIETL

Institute of Physics, Polish Academy of Sciences, Warsaw

- Why spin electronics?
 - -- semiconductors
 - -- ferromagnetic metals
- 2. Ferromagnetic semiconductors
- 3. Spin manipulation
 - -- magnetization
 - -- single spins

reviews: listed in the abstract

Integrated circuits

4 transistors J. S. Kilby US Patent Office, 3 052 822 10⁹ transistors processing and dynamic storage of information ; μP i DRAM

MOSFET – resistor + capacitor

JULIUS EDGAR LILIENFELD, OF BROOKLYN, NEW YORK

METHOD AND APPARATUS FOR CONTROLLING ELECTRIC CURRENTS

Application filed October 8, 1926. Serial No. 140,863, and in Canada October 22, 1925. I claim :---

> 1. The method of controlling the flow of an electric current in an electrically conducting medium of minute thickness, which comprises subjecting the same to an electrostatic influence to impede the flow of said current

Julius Edgar Lilienfeld (1882-1963)

Born in 1882 and till 1899 in Lvov Study and PhD (1905) in Berlin Professor in Leipzig (1910-26) Since 1926 in USA

Massachusetts. Lilienfeld was born in Poland, and his immigration papers say that he had brown hair and brown eyes, was 5 feet 6 inches tall and weighed 148 pounds.

Kleint, Prog. Surf. Sci. '98

Storing of information on hard disk

- high density and non-volatile (5GB/cm²)
- slow access and non-reliable (moving parts)

Storing of information on magnetooptical disc

- writing: heating above T_c
- reading: Kerr effect

Barriers

- financial, legal, psychological, ...
- technical
 - heat release, defects in oxide,
- physical
 - grain structure of matter: Coulomb blockade, ...
 - quantum phenomena: interference, tunneling, ...
 - thermodynamic phenomena: superparamagnetism, ...

Driving forces

entertainment industry

- New information carrier
 - electron → photon, flux (SQUID loops),
 vortex (type II superconductors);
 - spin rather than charge ...
- New principle of device operation quantum devices, spin transistors,
- New architecture
 - physical, chemical and biological processes
 - quantum computing
- Integration of functions, not only elements

=> Spintronics

SPINTRONICS *exploiting spin, not only charge*

rational: spin robust to external perturbations

- Storing and processing of classical information
- Storing and processing of quantum information
- Sensing magnetic field

Giant magnetoresistance (GMR) in ferromagnetic metal multilayers

A. Fert et al., P. Gruenberg et al., S. Parkin et al., 1988-91 J. Barnaś et al. (theory)

Spintronics – material aspects

- Why to do not combine complementary properties and functionalities of semiconductor and magnetic material systems?
- hybrid structures
 - -- overlayers or inclusions of ferromagnetic metals => source of stray fields and spin-polarized carriers
 - -- soft ferromagnets => local field amplifiers
 - -- hard ferromagnets => local field generators (cf. J. Kossut, ILC, Budapest'02)
- ferromagnetic semiconductors

Ferromagnetic semiconductors

- magnetic semiconductors short-range ferromagnetic super- or double exchange EuS, ZnCr₂Se₄, La_{1-x}Sr_xMnO₃, ...
- diluted magnetic semiconductors
 long-range hole-mediated ferromagnetic exchange
 IV-VI: p-Pb_{1-x-y}Mn_xSn_yTe (Story et al. '86)
 III-V: In_{1-x-}Mn_xAs (Munekata et al. '89, '92)
 Ga_{1-x-}Mn_xAs (Ohno et al. '96) T_c ≈ 100 K for x = 0.05
 II-VI: Cd_{1-x}Mn_xTe/Cd_{1-x-y}Zn_xMg_yTe:N QW
 (Cibert et al. '97, Kossacki et al. '99)
 Zn_{1-x}Mn_xTe:N (Ferrand et al. '99) Be_{1-x}Mn_xTe:N (Hansen et al. '01)

III-V and II-VI DMS:

quantum nanostructures and ferromagnetism combine

Spin injection in p-i-n (Ga,Mn)As /(In,Ga)As/GaAs diode (spin-LED)

Ohno et al., Nature '99

The nature of the Mn state and its coupling to carriers

Mn: 3d⁵4s²

II-VI: Mn electrically neutral (3d⁵, S = 5/2) –doping by acceptors necessary

III-V: Mn acts as source of spins and holes

- large *p*-*d* hybridization and large intra-site Hubbard U =>Kondo hamiltonian $H = -\beta N_o Ss =>$ large Mn-hole exchange
 - -- (Ga,Mn)As: $\beta N_o \approx$ 1.2 eV (Szczytko et al., Okabayashi et al.)
 - -- (Zn,Mn)Te: $\beta N_o \approx$ 1.0 eV (Twardowski et al.)
- no s-d hybridization => small Mn-electron exchange

 $\alpha N_o \approx 0.2 \text{ eV} (Gaj et al.)$

Mean-field Zener model

Which form of Mn magnetization minimizes F[M(r)]?

if M(r) uniform => ferromagnetic order otherwise => modulated magnetic structure $n_{holes} << N_{spins} \rightarrow Zener \equiv RKKY$

Curie temperature in p-Ga_{1-x}Mn_xAs theory vs. experiment

- Anomalous Hall effect → p uncertain
- Omiya et al.: 27 T, 50 mK
- *Theory:* T_c > 300 K for x > 0.1 and large p

T.D. et al., PRB'01

Tuning of magnetic ordering by electrostatic gates (ferro-FET)

H. Ohno, .., T.D., ...Nature '00

Ferromagnetic temperature in 2D p-Cd_{1-x}Mn_xTe QW and 3D Zn_{1-x}Mn_xTe:N

Combined: electrostatic gate + illumination in *pin* diode (ferro-LED)

OW

Optical tuning of magnetization - *pip* diode

paramagnetic

Zinc-blende ferromagnetic semiconductors - highlights

- Spin injection
 - (Ga, Mn)As/(Ga,In)As (St. Barbara, Sendai)
- Dimensional effects (Cd,Mn)Te, (Zn,Mn)Te (Grenoble, Warsaw)
- Isothermal transition para <--> ferro
 - light (In,Mn)As (Tokyo); (Cd,Mn)Te (Grenoble, Warsaw)
 - electric field (In,Mn)As (Sendai); (Cd,Mn)Te (Grenoble, Warsaw)
- GMR (Ga, Mn)As/(AI,Ga)As/ (Ga, Mn)As (Sendai)
- TMR (Ga, Mn)As/AIAs/ (Ga, Mn)As (Sendai, Tokyo)
- MCD (Ga, Mn)As (Warsaw, Tsukuba, St. Barbara)
- Strain engineering (Ga, Mn)As (Sedai, Tokyo, Warsaw)

Chemical trends – hole driven ferromagnetism $x_{Mn} = 0.05$, $p = 3.5 \times 10^{20} \text{ cm}^{-3}$

T.D. et al., Science '00

Quantum information hardware

A model of quantum computer, ²⁸Si:³¹P

Kane, Nature'98 cf. Loss, DiVincenzo PRA'98 • **qubit**: nuclear spin *I* = ½ of Phosphorous donor impurity

• single qubit operations: A gates affect hyperfine interaction

• two qubit operations: J gates affect e-e exchange interaction

• **silicon**: ²⁸Si – no nuclear moments, weak spin-orbit interaction

Towards quantum gates of quantum dots

expl. Delft, Munich, Ottawa, Rehovot, Tokyo, Warsaw, Wuerzburg, theory: Basel, Modena, Ottawa, Paris, Sapporo, Wroclaw, ...

> Spin molecules: cf. B. Barbara talk Quantum optics: cf. A. Zeilinger talk

Summary:

trends in semiconductor spintronics

- Physics of spin currents
 - -- injection, transport, coherence, new devices
- Spin manipulation
 - -- isothermal and fast magnetization reversal
 - -- single spin manipulation, magnetometry, entanglement
- Search for high temperature ferromagnetic semiconductors
 - -- carrier-controlled ferromagnetism
 - -- intrinsic ferromagnetism

warning: precipitates and inclusions often present

Thanks to colleagues in Warsaw and to: I. Solomon, Y. Merle d'Aubigne, H. Ohno, A.H. MacDonald, ...