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Förster Transfer : Non-radiative (resonance) mechanism for
transferring energy from one material (donor) to
another (acceptor), mediated by the Coulomb
force.

Depends on distance between the molecules
(1/R6) and the orientation of their transition
dipoles.

Energy migration : Excitations can “migrate” to lower energy sites
via the Förster mechanism, observed as a red-
shift in fluorescence with time.



Light Emitting Polymer : Organic material that consists of many repeat
units, whose excitations decay radiatively.

Two such polymers are :
Poly(9,9-dioctylfluorene)  (F8)

Poly(9,9-dioctylfluorene-co-
benzothiadiazole)  (BT)
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Time-resolved photoluminescence (PL) measurements were taken
to determine the rates of migration and transfer.

Samples were excited using a 100fs pulsed Ti:sapphire laser.
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�The PL spectra were
modelled with gaussian
curves.

�Distribution of excited
states increases  with
temperature, i.e.
increased migration.

Migration in F8 was investigated as a function of temperature :
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�Peak position shifts more at
low temperatures –
contradicts previous result?

Low T -  excitons migrate
easily to lower energy so peak
red-shifts as expected.

High T - thermal scattering
allows excitons to migrate to
higher energy states.

i.e. at high T, average exciton energy remains more static but
distribution of energies is increased.



Energy transfer from F8 to BT was investigated as a function
of donor-acceptor separation.
Layered structures were prepared which allowed precise
control over donor-acceptor separation.
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BT - spin cast onto silicon.

Stearic acid (SAC) -
deposited via Langmuir-
Blodgett (LB) technique.
(Optically inert layers of
known thickness.)

F8 - deposited via fast LB
technique



The lifetime of the donor (F8) fluorescence was measured for a
number of samples with varying spacer layer thicknesses.
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Samples with larger spacer layers
exhibited a longer donor lifetime
due to reduced energy transfer
between polymers.

The sample with no spacer layers
exhibited a lifetime of ~60ps, c.f.
pure donor lifetime of ~105ps.

Two sample decays are shown above - note that decays are single
exponential.



Blended spin cast samples were prepared by mixing the required
concentration of F8 and BT in solution.  Transfer as a function of guest
concentration was investigated.
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Typical PL decays from blend samples.
Solid lines are fitted single exponentials.

�Observed donor decay dynamics are
different than those in the layered
structures.

� Decays are no longer exponential
in shape – attributed to increased
migration affecting the Förster rate.



• Energy migration occurs in F8 over a timescale of ~500ps.

• The sample structure affects how energy transfer proceeds.

• Layered structures give exponential donor decays.

• Blended samples give non-exponential donor decays.

• This has implications for understanding the energy transfer
process in many real-world applications, such as polymer
LEDs.
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