Ion Beam Analysis Today and Tomorrow

Ferenc Pászti

Research Institute for Particle and Nuclear Physics, Budapest

20+5 min

The incident beam

- Accelerators
 - Used ones (5 MeV VdG, ...)
 - Smaller and cheaper (200 keV FIB, ...)
 - Special designs (3 MeV Tandem)
- Radioactive sources (planetary research)
- Beam size
 - Normal (1x1 mm²)
 - Microbeam (1x1 µm²)

5 MeV Van de Graaff Accelerator (EG-2R) at RIPNP, Budapest

1MeV tandem at Cambridge (GC-AMS)

B. J. Hughey, Nucl. Instr. Meth. B 172 (2000) 40.

2MeV Tandem at Louvre Paris (AGLAE)

http://www.culture.gouv.fr/culture/conservation/fr/methodes/aglae.htm

Main parameters

- Elements
 - Isotopes
- Depth of analysis
- Depth resolution
- Sensitivity

- Heavier than the ion
- ➔ for light elements
- → few 100nm (few µm)
- → few 10nm (few Å)
- few at% (light) few 100 ppm (heavy)

RBS spectra (3.045 MeV ⁴He) of Co implanted Si and a porous Si.

A.R.Ramos, Nucl. Instr. Meth. B 178 (2001) 283.

Suppressing the scattered ions

- Absorber foil
- Kinematics
- Coincidence
- Element identification (ΔE-E, TOF-E, ExB...)

Main parameters

• Elements Isotopes

- Lighter than the ion
 for light elements
- Depth of analysis
- Depth resolution
- Sensitivity

- → few 100nm
- → few 10nm (few nm)
- → few 0.1% (few ppm)

ERD spectrum from a thin, 200 Å, deuterated polystyrene film

J. Russel, Mat. Sci. Eng. R 38 (2002) 107.

2D ERD spectra from a GaN film with impurities (200 MeV Au ions, ΔE-E gas detector)

H. Timmers, Nucl. Instr. Meth. B 190 (2002) 393.

Suppressing the scattered ions

- Ions (p, d, α, ...)
 Positive Q value, filter foil
- n or γ
 Special detectors

Main parameters

- Elements
 - Isotopes
- Depth of analysis
- Depth resolution
- Sensitivity

- → specific
- → specific
- → few 10nm few µm
- → few nm few µm -
- ➔ few ppm

¹²C(d,p)¹³C NRA spectra of olivine with 1000 ppm C content (1.45 MeV d, 9 μm Al filter foil)

M.E.Varela, Geochimica et Cosmochimica Acta 64 (2000) 3433

Main parameters

- Elements
 - Isotopes
- Depth of analysis
- Depth resolution
- Sensitivity

→ heavier

- → no
- ➔ few µm
- → no
- ➔ few % few 10 ppm

Channeling

Channeling RBS spectra of He and Nimplanted and annealed Si. Virgin and random spectra are also included.

(10¹⁶ ion/cm² units)

A. Manuaba, Nucl. Instr. Meth. B (2001) 63

Lattice localization of Er in sapphire by RBS/channeling

E. Alves, Nucl. Instr. Meth. B 106 (1995) 429

Microprobe

Schematic diagram of the 200 kV FIB microprobe at Osaka University. 80 nm lateral resolution, Si, Be Au ions.

J. Tajima, Nucl. Instr. Meth. B 181 (2001) 44.

Y.K. Park, Nucl. Instr. Meth. B 158 (1999) 487.

New accelerators for IBA

- Cheaper and smaller accelerators for routine applications
- Larger used machines (HI-ERDA)
- Better microprobes
- •Transportable IBA?

Unique features

Channeling for damage profiling and lattice localization

- H depth profiling
- Atomic depth resolution
- Extreme sensitivity

New methods appear

Pore structure determination by resonance method

• Combination of TOF-RBS and TOF-SIMS by a nanoprobe

Half-width of the resonance peak for samples implanted at various tilts and fluencies.

Solid lines are fitted Lorentzian curves.

TOF spectra by the 200keV FIB. H, O, C peaks are due to secondary ions accelerated by the 1.8 kV detector bias of the MCP (TOF-SIMS).

K. Iwasaki, Nucl. Instr. Meth. B 190 (2002) 296.

