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SAME
SYSTEM

continuum density
    distributions ����
- uniform distribution
- population extinction

discrete individuals����
- self-organize in
- localized adaptive patches
- survival and development

Explain complexity as emerging from the interactions
of two very (trivially?) simple kinds of particles

A and B
“Life” (as opposed to uneventful uniform state)

Emerges and thrives even in most improbable conditions.



Plan of the Talk



• Definition of the System

• Continuum predictions

• Actual Behavior  ; Role of discreteness ; Movie

Anticlimactic,
ready to stop
when time is
up

•Applications:
•HIV

•Globalization,

•desert reclaim

  Euristic Explanation
                   emergence of adaptive collective objects

  Interpretation in various fields
      (life emergence, ecology, immunology,  society, marketing, finance)

  Pedagogical Sketch of RG flow and Rigorous exact proof



Imagine an area inhabited by a population of eternal agents A,

 - which spread out uniformly with average density a(x,t)=a0
and
 - move around randomly, with                  diffusion coefficient Da

Imagine now a race of mortals B, hopping at a diffusion rate Db

 over the same area with initial uniform density b(x,t=0)= b0

The B’s die at a constant death rate µ:  B ���� ∅∅∅∅
and
proliferate (generate a new B) [when they are at the
same location with a "catalyst," A],

  with a birth rate λλλλ::::         B + A ���� B + B + A
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Diffusion of A at rate Da
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B �∅ Death of B at rate µ
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B � Death of B at rate µ



What will happen? 



Therefore
b(x,t) decays to 0 as            bo(t) = bo(0) e (λλλλ 

  

 a0 – µµµµ 

  

 ) t

Together, this gives a uniform rate of change
for the number of B’s :                b.(x,t) =  (λλλλ 

  

 a0– µµµµ 

  

 ) 
  

 b(x,t) < 0

The naive lore:  continuum density distributions=>

- A maintains a homogeneous distribution density a(x,t) = ao

- the number of A’s at any location where any B resides is a0

- therefore the rate at which each B
         produces new B’s is uniform λλλλ 

  

 a0

- the probability rate for each B to die is uniform µµµµ



The continuum view: a(x,t) = 2.
Wherever the B’s are, they
- generate a new B at rate 2 λλλλ
and
- disappear at rate µµµµ.
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The discrete view: a(x,t) ≠≠≠≠ 2.
But < a(x,t) > = 2. Now B’s
- generate new B at rate
                              a(x,t) λλλλ and
- disappear at rate µµµµ.
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E.g µµµµ ==== 
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 e-3/2λλλλt

Even if 2 λλλλ 

  

 −µ−µ−µ−µ <<<< 

  

 0000, b(x,t)
may still increase as
e (a(x,t)λλλλ 
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A one –dimensional example
λλλλ 

  

 ==== 

  

 1111    

        

    a0000 

  

 

==== 

  

 1/71/71/71/7   

      

   µ=µ=µ=µ= 

  

 1/21/21/21/2

 1111 

  

 x 
  

 1/71/71/71/7 

  

 −−−− 

  

 1/21/21/21/2 

  

 ==== 

  

 −5/14−5/14−5/14−5/14 
  

 <<<< 

  

 0000

b (t+1) - b(t) = ( λλλλ 
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 b(t) = -5/14 b(t)

b (t+1) = 9/14 b(t)



b4(t+1) = (1 + λ - µ) b4(t)

= 3/2 b4(t)

A A
    1      2    3       4       5    6     7     8    9    10    11   12  13  14

b13(t+1) = (1 

  

 - 
  

 µµµµ) b13(t)

         = 1/2 b13(t)

t

< b >

(1-5/14) t

Initial exponential decay
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Diffusion could smear the effects of A discreteness

- On a large enough 2 dimensional surface,
                                   the B population always grows!

- In higher dimensions, λλλλ 

  

 >>>> 

  

 Da

                     always suffices ∀∀∀∀µ,µ,µ,µ, 
  

 Db,,,,    < a(x,t) >!

But it doesn’t

one can prove rigorously
(RG flow, Branching Random Walks Theorems)

that:



λλλλ 

  

 a 0– µµµµ 

  

 < 0 10 x 0.05 – 6 < 0

Da= 0.2
Db=10



Angels and Mortals by my students
Eldad Bettelheim and Benny Lehmann
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I.e. a0000 
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 < a(x,t) > = 1/Volume

(on a 14 site 1-dim lattice a0000 
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The Role of DIFFUSION
The Emergence of Adaptive B islands

Take just one A in all the lattice:
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e - µ tB diffusion (neglect returning B’s)
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Growth stops when A jumps to a neighboring site



A A



A

Growth will start on the New A
site from a height lower by a

factor Db /λλλλ

B population on the old A site will decrease
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Growth stops again when A jumps again
(typically after each time interval 1/DA)



AA AAA



A AA A A

e (    λλλλ – µµµµ -DB) t

Growth in
between
jumps

Factor lost at
each A jump

 (DB /λλλλ 

  

 )

Number of A
jumps during
the time t

DA t



  e [ln (DB /λλλλ 

  

 ) DA + ( 
  

 λλλλ – µµµµ -DB)] t

TIME SP
CA

E

ln b

TIME

ln b at current
A location

 (A location (unseen)
     and
 b distribution)



Before more theoretical study,
let us list applications/ interpretations



Collaborations that identified and studied systems

in biology, finance and social sciences  that

•are naively non-viable (decay to extinction) when viewed
macroscopically

•but perfectly viable in reality

•(and when simulated / analyzed correctly at the microscopic
individual level).



In particular, most of the species in nature could be in this regime: ---
- negative naive average growth rate but
- actual survival and proliferation.
Ordinary miracles Michael Brooks  New Scientist magazine, May 2000:

<< Jeff Kirkwood, a population dynamics researcher
 at Imperial College, London, says

this close look is particularly valuable when predicting
population growth in a diverse environment.

"If you looked 'on average', the conditions are just hopeless and
no one has any right to survive," he says.
 But if there are patches where it is possible to survive,>>



- spatial patches = first self-sustaining proto-cells.

Interpretations in Various Fields:

- individuals =chemical molecules,
Origins of Life:

Speciation:
             - Sites: various genomic configurations.
             - B= individuals;  Jumps of B=  mutations.
             - A= advantaged niches (evolving fitness landscape).
             - emergent adaptive patches=  species

Immune system:
           - B cells; A antigen
 B cells that meet antigen with complementary shape multiply.
(later in detail the AIDS analysis)



Finance:- sites: investment instruments
               - B = capital units, A= profit opportunities.

Newton (after loosing 20 K Pounds in stock market)
 “I can calculate the motions of heavenly bodies, but
   not the madness of people."

Financial markets don't need wise/ intelligent investors
to work:

  Capital can
  survive and even proliferate
  simply by
  being autocatalytic

Adam Smith’s invisible hand…
                              doesn’t even need investor’s self-interest



What if λλλλ, µ,µ,µ,µ, etc are arbitrary ?

Expressing the AB system formally as a
Statistical Field Theory model and applying

Renormalization Group Analysis

to obtain its phases.

For more details see: Reaction-Diffusion Systems with Discrete Reactants ,
Eldad Bettelheim , MSc Thesis, Hebrew University of Jerusalem 2001
http://racah.fiz.huji.ac.il/~eldadb/masters/masters2.html



DivisionRate
                =

     

          

     λλλλ

Each point represents another AB system:
the coordinates represent its parameters: naive
effective B decay rate (µµµµ-λλλλa0) and B division rate λλλλ

BDeath

Life;

Positive
Naïve
Effective
B decay rate
      = (µµµµ-λλλλ a0)

     Negative
    Decay Rate
      = Growth



Each point represents another AB system:
the coordinates represent its parameters: naive
effective B decay rate (µµµµ-λλλλa0) and B division rate λλλλ

BDeath

Life;

Positive
Naïve
Effective
B decay rate
      = (µµµµ-λλλλ a0)

     Negative
    Decay Rate
      = Growth

Initially, at
small scales, B
effective decay
rate increases

 2 ππππ (d-2) D DivisionRate
                =

     

          

     λλλλ
Life Wins!

At larger
scales B
effective
decay rate
decreases



Ordinary miracles Michael Brooks, New Scientist magazine, May 2000
<< According to John Beringer, an expert on microbial
biology at the University of Bristol:

"Microbes that need oxygen will be found close to the
surface of soil, and microbes that are very fastidious about
oxygen concentration will be found in
bands at the appropriate oxygen concentration."

Microbes concentrating on a
two-dimensional resource may have been
more successful than their cousins who tried exploiting a
three-dimensional feast.>> 



Finite cut-off What if A and B have finite size?
(I.e. finite momentum cut-off )



but for d>2   Pd (∞∞∞∞) < 1; P3 (∞∞∞∞ ) = 0.3405373

Pólya 's Random Walk  Constant

What is the probability Pd (∞∞∞∞ ) that
eventually an A returns to its site of

origin?

        Pólya : P1 (∞∞∞∞ ) =   P2 (∞∞∞∞ ) =1 

Kesten and Sidoravicius studied the AB model using it (preprint 75 p):

On large enough 2 dimensional surfaces∀∀∀∀λλλλ, µ,µ,µ,µ, 
  

 Db,,,,Da,,,,a0

-Total/average B population always grows.



Study the effect of one A on b(x,t) on its site of origin x

Typical duration of an A visit: 1/Da

Average increase of b(x,t) per A visit:                    e λλλλ/ Da

Probability of one A return by time t (d-dimesional grid):Pd(t)

Expected increase in b(x,t) due to 1 return events: e λλλλ/ Da Pd (t)

Ignore for the moment the death and emigration and other A’s



But for d= 2   Pd (∞∞∞∞ ) =1
so       e λλλλ/ Da Pd (∞∞∞∞ ) > 1

eλλλλ/Da Pd(∞∞∞∞)

1

t

    e λλλλ/ Da Pd (t)eηηηη

ττττ

                 

                                  

                 η∼η∼η∼η∼  λλλλ/2Da      > 0
             

                          

             ττττ 

  

 ∼∼∼∼  

  

 eDa / 2λ2λ2λ2λ 

  

 < ∞∞∞∞
finite positive growth
in finite time !

Study the effect of one A on b(x,t) on its site of origin x

Typical duration of an A visit: 1/Da

Average increase of b(x,t) per A visit:                    e λλλλ/ Da

Probability of one A return by time t (d-dimesional grid):Pd(t)

Expected increase in b(x,t) due to 1 return events: e λλλλ/ Da Pd (t)

Ignore for the moment the death and emigration and other A’s



{Probability of n returns before time t = n ττττ } > P nd(ττττ 

  

 )
Growth induced by such an event: e nλλλλ/ Da

Expected factor to b(x,t) due to n return events:

   > [eλλλλ/ Da Pd(ττττ 

  

 )]n  = e nηηηη 

  

 = eηηηη
 

  

 

t////ττττ 

  

 exponential time growth!

-increase is expected at all x’s where: a(x,0) > (µµµµ+Db)ττττ/η/η/η/η
There is a finite density of such a(x,0)’s => <b(x,t)>���� ∞∞∞∞

Taking in account death rate µ,µ,µ,µ,
                              

                                                            

                              emigration rate Db and that
                                               there are a(x,0) such A’s:

< b(x,t) > >  b(x,0) e - (µµµµ 

  

 +Db) t e a(x,0)ηηηη 

  

 t////ττττ



Losing All Battles and Wining the War

HIV time hierarchy:

U Hershberg, Y Louzoun, H Atlan and S Solomon
Physica A: 289 (1-2) (2001) pp.178-190 ;
http://xxx.lanl.gov/abs/nlin.AO/0006023



Ai ���� Ai ±±±± 1    Virons can mutate (actually in a n-dim space)

A = antigens (virons)

B = cells of the immune system

i = index of the particular characteristic shape of virus/immune cell

Ai+Bi ���� Ai+Bi+Bi  Immune cells multiply when they meet
      virons with complementary shape to theirs

Ai ���� Ai+Ai               Virons multiply

Ai+B* ���� Ai      Immune cells of any type are destroyed
                                        when infected by viruses of any type 

Bi+Ai ���� Bi       Virons are destroyed when detected by
      immune cells of complementary shape



 B B  B B B B  B B

The immune system generates cells with various characteristic
shapes to probe for the presence of
antigens with complementary shapes.

Shape space



 B B  B B B B  B B

Once some virons get in the system, they multiply unhindered
as long as none of them meets an immune system cell with
complementary shape.

Infection

Shape space

 B



 B B  B B B B  B B

B

Once one viron (individual from the strain) meets an immune
system  cell the cell keeps multiplying and its descendents
meet more virons and multiply too.

Some mutant virons with different shape (and therefore undetectable by
the present strain of immune cells) are produced.



 B

The virons from the strain detected by the cells with
complementary shape are destroyed.

The mutant ones have different shape. They are not detected (yet) so they
multiply unhindered.



 B

The detected viron strain is destroyed by the immune system.

Shape space
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The detected viron strain is destroyed by the immune system.

Shape space
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The detected viron strain is destroyed by the immune system.

Shape space
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Before being completely destroyed, the detected strain is able
to generate randomly more mutants, with different
characteristic shape.

Shape space
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The initial strain is decimated but the mutants are still
undetected and multiply unhindered.

Shape space
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The initial strain has now disappeared.
The acute phase: primary infection, is finished.
The mutants are still undetected.

This strain has so small population that even an immune cell with
complementary shape doesn’t meet/detect any of its individuals.



 B B  B

X

After the initial strain is destroyed, the immune cells with
complementary shape do not meet any excitation and they die
without multiplying. Some “memory cells” with the
information of the initial strain shape are left (forever).

In the meantime one of the mutant strains is detected



 BX

Shape space



 B B  B B

 BX

The immune cells with the complementary shape to the
detected strain multiply. They are not many enough yet to stop
the multiplication of the strain and in particular the generation
of some mutants.

Shape space



 B B B

 BX

The detected strain is being decimated but its mutants do well
and in fact produce mutants of themselves.

Shape space



 B B  B B

 BX

 The detected strain is about to disappear and another strain is
just being detected.
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XX

 The antibodies corresponding to the destroyed strain
disappear. Only memory cells are left.

Antibodies corresponding to the newly detected strain are
being produced.
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XX

 B
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XX X

The virus looses another battle but the number of strains keeps
increasing. Copy at the beginning



The virus looses another battle but the number of strains keeps
increasing until it overcomes the immune system.

X
X

X
XX X

X X
X

X
XX X

X
X

X
XX X

X
X

X
XX X

X
X

X
XX

X XX



New strains appear and are
destroyed within weeks.

Many new small
strains accumulate
and destroy many
immune system cells.
The system collapses

The strains
of the first
invasion are
completely
wiped out

REALITY

SIMULATION



              Discretization=> micro-inhomogeneity

              Auto-catalysis (b
.
~ b)=> amplification

Complex Collective objects with emergent properties

Identity
Spatio-temporal
localization

Adaptation
Increase chances
of survival
Sustainability

Cognition
Searching,
Finding and
Exploiting A
fluctuations

    CONCLUSION

Applies to many real life systems



Slides Left out of the Talk



           Desertification and Reclaim

Measurements of organic matter distribution
across a region ranging 

from total (uniform) desert 

to (uniform) mediteranean vegetation

In between: semi-arid regions: adaptive patches



Mediterranean Desert
200mm500mm

Semi-arid

 s



Desert

uniform

Mediterranean

   uniform

Semi-arid

patchy



Saturation Effects;
Globalization of Competition

leads to

Localization of Growth



Malthus� exponential growth when <birth> > <death >

b.
(t) =  αααα b(t) => exponential increase for  αααα > 0

Here � Super-Malthus: always exponential growth:
Natural death µµµµ b(x,t) does not lead to saturation.
For very large b(x,t)’s competition necessary (Verhuulst 1838):

Lotka and Volterra:
b(t) = the size of an animal/plant population,
αααα    =  the aggregated effects of birth and natural death,
-γγγγ b(t)2 = competition for limited resources.

Montroll: “almost all the social phenomena, except in their relatively
brief abnormal times obey the logistic growth''.

Logistic equation  b.(t) =  αααα b(t) – γγγγ b(t)2

Tasmania Sheep



Finance, Solomon and Levy have suggested that
- b(t) = the total capital within a financial system.
-αααα b(t) = the average returns that the system offers,
-γγγγ b(t)2 the effects of competition and

Economics, Aoki
- b(t) = the total product demand in a market.
-αααα b(t) = emergence of new products ~ size of the market.
-γγγγ b(t)2  the products have to compete with one another within
a finite total potential market.



Local Competition

One spatially extended generalization of the Lotka Voltera
system:

a(x,t) is not a continuum function:

it is a stochastic integer at each site x and it changes in time
according to the jumping diffusion rules discussed before.

If (λλλλ a(x,t) – µ)µ)µ)µ) 
  

 <<<< 

  

 0000 

  

 =>=>=>=> 

  

 localized adaptive islands of finite hight.
- Improved life expectation but b=0 fixed point for discrete B.

b.
(x,t) = (λλλλ a(x,t) - µµµµ 

  

 ) 
  

 b(x,t) – γγγγ b(x,t) 2 + Db  ∆∆∆∆ 

  

 b(x,t)





b.
(x,t) = (λλλλ a(x,t) - µµµµ 

  

 ) 
  

 b(x,t) – γγγγ b(x,t) 2 +         Db ∆∆∆∆ 

  

 b(x,t)

Indeed averaging                                      <γγγγ    b(x,t) 2 >
does not give                             γγγγ    b(t)2 ≡γγγγ <  b(x,t)   > 2

average over the nonlocal (infinite range) term
                              < γγγγ b(x,t)  <b(x,t)>x >x = γγγγ <   b(x,t)   >x

2 does.

is not the natural space extended version of
                         b.(t) =  αααα b(t) – γγγγ    b(t)2 .

The Local Competition equation

One is lead to the global competition equation:

b.
(x,t) = (λλλλ a(x,t) - µµµµ 

  

 ) 
  

 b(x,t)- γγγγ b(x,t)<b(x,t)>x+Db∆∆∆∆b(x,t)





Of course, if the location of xmax changes in time, one expects
very large fluctuations in the total population:

 all the population of B’s at the old location has to disappear

 and  all the population at the new location has to somehow
arise.

The global competition is not only leading to localized wealth
but also to significant instability.



With global competition the highest island
destroys all its competitors;

price: large fluctuations



Rise and fall of civilizations?



Zero Range (unefficent but very stable)

Infinite Range (efficient but unstable)

Intermediate Range

               b.
(x,t) = (λλλλa(x,t) - µµµµ 

  

 ) 
  

 b(x,t) – γγγγ b(x,t) <b(x, t)>R+ Db  ∆∆∆∆ 

  

 b(x,t)               b.
(x,t) = (λλλλa(x,t) - µµµµ 

  

 ) 
  

 b(x,t) – γγγγ b(x,t) b(x, t) + Db  ∆∆∆∆ 

  

 b(x,t)               b.
(x,t) = (λλλλa(x,t) - µµµµ 

  

 ) 
  

 b(x,t) – γγγγ b(x,t) <b(x, t)>+ Db  ∆∆∆∆ 

  

 b(x,t)



b.
(x,t)=(λλλλa(x,t)-µµµµ) 

  

 b(x,t) – γγγγ b(x,t)<b(x,t)>R+ Db  ∆∆∆∆ 

  

 b(x,t)

                 <b(x,t)>R  = ΣΣΣΣ|y-x-1|<R b(y,t) / ΣΣΣΣ|y-x-1|<R 1

Finite Competition Range R

X

y



Finite competition radius

In each region of radius R there is only one active center.
For equal γγγγ ’s finite R gives greatly more B ‘s than R=0.

Competition increases efficiency !





One describes the dynamics of the system in terms
of the probabilities of the various configurations:
Pnm (x) = the probability that there are
                  m B’s and n A’s at the site x .

The death of B’s and the birth of B’s in the
presence of A’s are represented by the first and
respectively second term in the Master Equation:

d Pnm  / dt = - µµµµ 

  

 [ m Pnm – (m+1) P n,m+1 ]

    - λλλλ [ mn P nm – n (m-1) P n,m-1]









m = µ – na λ   
  

 λλλλ





Finite
cut-off
region



In conclusion, our results suggest that the dimensionality
of the system and its size are crucial features for its
capability to emerge and sustain life. This may explain the
fact that most ecological systems are two-dimensional.

Reinterpreting in the genome space, the present results
provide the conceptual link between the atomized
structure of the life building blocks and the explosive
Darwinian tandem, noise + proliferation



John Beringer (microbial biology, Bristol U):

"Microbes that need oxygen will be found

close to the surface of soil, and
microbes that are very fastidious about oxygen concentration

will be found in bands

at the appropriate oxygen concentration."

Microbes concentrating on a two-dimensional resource

may have been more successful than

their cousins who tried exploiting a three-dimensional
feast. 



Finite cut-off



A profile
B profile

Initially: large B population on large A pile

The initial B population is large
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btot

B profile
A profile

The A pile dissolves and another pile emerges far away

The btot population is still large
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b(x)

a(x)



B profile A profile

btot

b(x)

a(x)

The btot population is decreasing

The B’s do not succeed to discover the faraway A pile

x

t



B profile A profile

btot

b(x)

a(x)

The btot population keeps decreasing

The B’s find a way to approach the new A pile
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B profile A profile

btot

b(x)

a(x)

The B’s have found the new A pile !!!

The btot population starts increasing
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B profile

A profile
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b(x)

a(x)

!!!
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and

-diffusive (space-time correlated) noise – where A just jumps
between neighboring sites and allows (descendents of) the
B’s to follow them.

The necessity for B to find a way to the new A pile
emphasizes the difference between

- random (space time-uncorrelated) noise – where A’s would
disappear from one site and would reappear in another
randomly uncorrelated site.

Continuity of the random hostile environment in time is a
crucial feature for adaptability and life emergence.



Returning to 2D note that the probability that
the conditions leading to growth are fulfilled

[all a(x,t) particles A keep returning to x at least after each interval ττττ ]

decays as:

[Pd(ττττ 

  

 )] n a(x,0) ~ e (-λλλλ/ Da+ηηηη) t////ττττ 

  

 ττττ(µµµµ 

  

 +Db)//// ηηηη

Taking ηηηη 

  

 ~ λλλλ/ 2Da:this is

Pd(ττττ 

  

 ) n a(x,0) ~ e –t λλλλ 

  

 (µµµµ 

  

 +Db)    / (ηηηη Da ) ~ e –t (µµµµ 

  

 +Db)

Less and less locations create more and more population!!!

For d=3 : λλλλ > Da ln 1/0.34;  

d � ∞∞∞∞: λλλλ > Da ln 2d



What we found is that in the case of the global competition, if there
is a site with the largest A population:

a(xmax,t) > a(x,t) ∀∀∀∀  x ≠≠≠≠ xmax

Then all the other neighbourhoods are depleted of B’s.

The continuum equations are NEVER correct for the AB model with
global competition (even for (λλλλ 

  

 a0 - µµµµ  

    

  >>>> 

  

 0).0).0).0).

One may be a bit confused of using differential equations notation to
obtain results that are incompatible with the equations.

The point is that for continuous uniform a(x,t) the solution for b
is uniform too (and vanishes uniformly for λλλλ 

  

 a0 - µµµµ  

    

  <<<< 

  

 0000).

For discrete uniformly (Poisson) distributed A’s, there are
always sites with larger number of A’s and in particular with
 a(x,t) > µµµµ 

  

 ////    λ.λ.λ.λ.



For Experts (in such a big room I have to ask the usual
questions) Don’t look for cheap escapes:

Q - slow a(x,t) ���� a0 convergence:
A -  enough a(x,t) < µ/µ/µ/µ/ 

  

 λλλλ 

  

 ,,,,∀∀∀∀  

  

 x 

  

 for decay ;
    - a(x,t) starts uniform.
Q- non-linear features in PDE

 b. = (a λλλλ 

  

 - µµµµ 

  

 ) 
  

 b + Db  ∆∆∆∆ 

  

 b
A- the equation is linear in b!; b does not react on a!
Q - instability of the homogenous b(x,t)= b(0,t)  solution:
A- The homogenous solution is stable for λλλλ 

  

 a 0 – µµµµ 

  

 < 0
Once a continuous a(x,t) is accepted,
the death sentence for λλλλ 

  

 a 0 – µµµµ 

  

 < 0 is unavoidable



Continuous functions a(x,t) and b(x,t) just do not
represent faithfully the system of particles A and B
even for infinite number of particles per unit area (i.e. in
the “continuum limit”).

The discreteness effects do not fade away (in fact increases)
when one has more and more particles per site : <<<< 

  

 a > ���� ∞∞∞∞   .

Even (especially!)

the rarest and most spatially restricted (singular)
microscopic fluctuations in A
are amplified by the proliferation in B.



Q- Discreteness / microscopic fluctuations were known to

-influence the approach to the equilibrium state
(e.g. Fisher waves; Cardy annihilation)

-shift the exact value of a phase transition point.
So what is the novelty?

A- Here the very character of the final state is affected:

Discreteness makes the difference between life and death.

Again for experts



Behavioral Finance

B= financial traders,

Patches= "herding" behavior

(despite the fact that we do not introduce communication
between B’s)..

May explain some paradoxes in finance E.g

-between the efficient market hypothesis (absence of
systematic profit opportunities in equilibrium markets) and

-the actual profits that investors extract daily from the market.



Proof of the Stronger Result:
Probability for A to stay in one visit at x exactly a time t is:
                                           e-t Da Da dt
The growth factor to B that such a stay implies is
                                   et λλλλ

The expected factor is then
                                ∫∫∫∫ e(λλλλ -Da) t Da dt = 1/(1- λλλλ 

  

 ////    Da)
Taking into account the possibility of multiple visits
like in the main proof, this gives the condition of life:

Pd (∞∞∞∞ ) /(1- λλλλ 

  

 ////    Da) > 1

i.e. λλλλ  

    

  >>>> 

  

 Da (1- Pd (∞∞∞∞ ))



When Physics Meets Biology  By David Bradley  (Physics Direct)

Antibodies (B) attach themselves to virus particles, which allows
immune cells to mop them up.

An antibody has to have just the right sequence to grab hold of a
particular strain of the virus, so the immune system generates antibodies
at random until one fits.

Then a flood of similar antibodies are produced (B+A� B+B+A)
obliterating that viral strain.

But HIV mutates rapidly. You can imagine strains of virus wandering
around in an abstract genetic space as they mutate.

Every strain will eventually encounter a deadly antibody, and then the
game's up for that strain. If just more than one virion mutates
appropriately from each population, the islands of virus proliferate.



The immune system wins in every confrontation with any particular HIV
strain, but as the mutant strains become more numerous, the immune
system eventually collapses under their collective pressure."

-After several hundred such battles, the number of small 'undetectable'
strains become very numerous. Although each is too small to be detected,
they are numerous enough in total to destroy a large number of immune
cells. At this point one enters the third phase of the disease: HIV
infection becomes AIDS.

- Our study is already being confirmed experimentally by independent
research.
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  e [ln (DB /λλλλ 

  

 ) DA + (    λλλλ – µµµµ -DB)] t



λ= 0.4 , µ = 1 , DB = 0.1 = DA , a0 = 0.5 , λ a0 – µ = -0.8

 0.4 <  1 + 0.1



White
circle

Black
circle



The entire B population is in an island around xmax with population
b(xmax,t) ~ (λλλλ 

  

 a(xmax,t) - µµµµ 

  

 ) x Volume

Concentrate on the site xmax with the property:
                                                    a(xmax,t) > a(x,t): ∀∀∀∀  x ≠≠≠≠ xmax
according (1) its population keeps increasing until
                [(λλλλ 

  

 a(xmax,t) -µµµµ 

  

 ) –    γγγγ <b(x,t)>x] = 0                    (2)

b.
(x,t)=(λλλλa(x,t)-µµµµ 

  

 ) 
  

 b(x,t) –γγγγ 

  

  b(x,t) <b(x,t)>x + Db  ∆∆∆∆ 

  

 b(x,t)
Stable state (neglecting diffusion) is given by :

 b.
(x,t)=0=[(λλλλ 

  

 a(x,t)-µµµµ 

  

 ) –    γγγγ <b(x,t)>x] b(x,t)                 (1)

This fixes <b(x,t)>x . But this means that for ∀∀∀∀  x ≠≠≠≠ xmax

                 [(λλλλ 

  

 a(x,t) -µµµµ 

  

 )     –    γγγγ <b(x,t)>x] < 0
And according (1) b(x,t) will decrease until b(x,t) =0 ∀∀∀∀  x ≠≠≠≠ xmax



George Pólya (1887-1985)



Harry Kesten



Almost all B’sNo B’s



sorin.html

movie



- Field theory techniques (renormalization group),
in 2D life wins if ultraviolet cut-off ���� infinity (RG misses singular)

- Microscopic representation techniques (agent simulations)

continuum treatment:
underestimates resilience ;

misses emergence of
complex adaptive collective objects

One can study the discrete system by using:

- Stochastic processes theorems (branching random walks)
- isolated adaptive B islands 
- 2D survival even with finite cut-off



The Importance of an A on b(x,t) on its site of origin x

One return
before t = ττττ

Two returns
before t = 2τ2τ2τ2τ

 n returns
 before t = nττττ

prob: Pd (τ;τ;τ;τ;    1)= 
          Pd (ττττ ) 

Pd (2τ;τ;τ;τ;    2 )>
             Pd

2
 (ττττ 

  

 )
Pd (nττττ;;;;    n )>
               Pd

n
 (ττττ 

  

 )

growth:e λλλλ/ Da e 2λλλλ/ Da e nλλλλ/ Da

Expct. growth
Pd (ττττ )e λλλλ/ Da

Pd (ττττ )e λλλλ/ Da

Pd (ττττ )e λλλλ/ Da 

 = eηηηη 

  

 by def ττττ

Pd (2ττττ ;2)e2λλλλ/ Da

>P2
d(ττττ 

  

 )e 2λλλλ/ Da

>[Pd(ττττ 

  

 )eλλλλ/ Da]2

              = e 2 ηηηη

Pd (nττττ;;;;    n ) e nλλλλ/ Da

>P nd(ττττ 

  

 )e nλλλλ/ Da

>[Pd(ττττ 

  

 )eλλλλ/ Da]n   

= e nηηηη 

  

 = e ηηηηt////ττττ

……..

……..

……..

……..

……..



     

          

     ∼∼∼∼  

  

 (µµµµ 

  

 + Db) e Da / λλλλ Da////    λλλλ

If Pd ( ∞∞∞∞    ) e λλλλ/ Da > 1  then ∃∃∃∃  ττττ 

  

 <<<< 

  

 ∞∞∞∞    ,,,,    ηηηη > 0 

  

 s.t.

the expected contribution over time t  of one A initially at x
                                        to b(x,t) is at least a factor e ηηηηt////ττττ.

So:

There is a finite density of such a(x,0)’s =>
=>average population increases (at least) exponentially



-increase is expected at all x’s where: a(x,0) > (µµµµ+Db)ττττ/η/η/η/η
     

          

     ∼∼∼∼  

  

 (µµµµ 

  

 + Db) e Da / λλλλ Da////    λλλλ

If Pd ( ∞∞∞∞    ) e λλλλ/ Da > 1  then ∃∃∃∃  ττττ 

  

 <<<< 

  

 ∞∞∞∞    ,,,,    ηηηη > 0 

  

 s.t.

Taking in account death rate µ,µ,µ,µ,
                                   

                                                                      

                                   emigration rate Db and that
                              there are a(x,0) such A’s:

<b(x,t)> >  b(x,0) e -(µµµµ 

  

 +Db) t e a(x,0)ηηηη 

  

 t////ττττ

the expected contribution over time t  of one A initially at x
                                        to b(x,t) is at least a factor e ηηηηt////ττττ.

So:

There is a finite density of such a(x,0)’s =>
=>average population increases (at least) exponentially



 2 π (d-2)

λλλλ/D

(µµµµ-λλλλ a0)/D

π (d-2)2 a0

1



but for d>2   Pd (∞∞∞∞) < 1; P3 (∞∞∞∞ ) = 0.3405373

Pólya 's Random Walk  Constant

What is the probability Pd (∞∞∞∞ ) that
eventually an A returns to its site of

origin?

        Pólya : P1 (∞∞∞∞ ) =   P2 (∞∞∞∞ ) =1 

Result based on Kesten and Sidoravicius preprint (75 p):

On large enough 2 dimensional surfaces∀∀∀∀λλλλ, µ,µ,µ,µ, 
  

 Db,,,,Da,,,,a0

-Total/average B population always grows:

 for  t����∞∞∞∞:                           lim ([ ∑  b(x,t) ] /R2)  > eαααα t
                                             R����∞∞∞∞       x<R



Click here for the Angels and Mortals movie by
Eldad Bettelheim and Benny Lehmann



Click here for the movie

Angels and Mortals

By my students

Eldad Bettelheim and Benny Lehmann





(µµµµ-λλλλ a0)

λλλλ



λλλλ/D

(µµµµ-λλλλ a0)/D

π (d-2)2 a0



Study the effect of one A on b(x,t) on its site of origin x

Typical duration of each visit: 1/Da

Average increase of b(x,t) per visit:  e λλλλ/ Da

Probability of return of A by time t (d-dimesional grid) : Pd(t)

Expected increase in b(x,t) due to 1 return events: Pd (t) e λλλλ/ Da

Ignore for the moment the death and emigration and other A’s

Pd(∞∞∞∞)eλλλλ/Da

1

t

If Pd (∞∞∞∞ ) e λλλλ/ Da > 1
[Always true in 2 dim !]
Then ∃∃∃∃  ττττ 

  

 s.t.
   Pd ( ττττ   ) e λλλλ/ Da = eηηηη ;
                           ηηηη > 0


