Crowd Control: A physicist's approach to collective human behaviour

T. Vicsek

in collaboration with:

A.L. Barabási, A. Czirók, I. Farkas, Z. Néda and D. Helbing

http://angel.elte.hu/~vicsek

EPS12, Budapest, Aug. 2002

Group motion of humans (observations)

Pedestrian crossing: Self-organized lanes

Corridor in stadium: jamming

Ordered motion (Kaba stone, Mecca)

Collective "action": Mexican wave

STATISTICAL PHYSICS OF COLLECTIVE BEHAVIOUR

Collective behavior is a typical feature of living systems consisting of *many similar* units

 We consider systems in which the <u>global behaviour</u> does <u>not</u> <u>depend</u> on the <u>fine details</u> of its units ("particles")

 Main feature of collective phenomena: the behaviour of the units becomes similar, but very different from what they would exhibit in the absence of the others

Main types: (phase) transitions, pattern/network formation,

synchronization*, group motion*

MESSAGES

 Methods of statistical physics can be successfully used to interpret collective behaviour

- The above mentioned behavioural patterns can be observed and quantitatively described/explained for a *wide range of phenomena* starting from the *simplest* manifestations of life (bacteria) up to <u>humans</u> because of the common underlying principles

See, e.g.: *Fluctuations and Scaling in Biology*, T. Vicsek, ed. (Oxford Univ. Press, 2001)

Synchronization

- **Examples:** (fire flies, cicada, heart, steps, dancing, etc)
- "Iron" clapping: collective human behaviour allowing quantitative analysis

Dependence of sound intensity On time

Fourier-gram of rhythmic applause Frequency

Time →

Darkness is proportional to the magnitude of the power spectrum

Group motion of humans (theory)

- Model:
 - Newton's equations of motion
 - Forces are of *social*, *psychological* or *physical* origin (herding, avoidance, friction, etc)
- Statement:
 - Realistic models useful for interpretation of practical situations and applications can be constructed

Ordering in velocity space

Escaping from a narrow corridor

The chance of escaping (ordered motion) depends on the level of "excitement" (on the level of perturbations relative to the "follow the others" rule)

Large perturbatons

Smaller perturbations

EQUATION OF MOTION for the velocity of pedestrian *i*

$$\begin{split} m_{i} \frac{dv_{i}}{dt} &= m_{i} \frac{v_{i}^{0}(t)\vec{e}_{i}^{0}(t) - \vec{v}_{i}(t)}{\tau_{i}} + \sum_{j \neq i} \vec{f}_{ij} + \vec{f}_{iW} ,\\ \vec{f}_{ij} &= \left[A_{i} \exp\left[\left(r_{ij} - d_{ij}\right) / B_{i}\right] + kg\left(r_{ij} - d_{ij}\right)\right]\vec{n}_{ij} + \kappa g\left(r_{ij} - d_{ij}\right)\Delta v_{ji}^{t}\vec{t}_{ij} , \end{split}$$

"psychological / social", elastic repulsion and sliding friction force terms, and g(x) is zero, if $d_{ij} > r_{ij}$, otherwise it is equal to x.

MASS BEHAVIOUR: herding

$$\vec{e}_i^0(t) = N\left[(1 - p_i)\vec{e}_i + p_i \langle \vec{e}_j^0(t) \rangle_j \right],$$

where $N(\vec{z}) = \vec{z} / \|\vec{z}\|$ denotes normalization of \vec{z} .

Social force: "Crystallization" in a pool

Moving along a wider corridor

- Spontaneous segregation (build up of lanes)
- optimization

Typical situation

crowd

Panic

• Escaping from a closed area through a door

• At the exit physical forces are dominant !

Paradoxial effects

obstacle: helps (decreases the presure)
widening: harms (results in a jamming-like effect)

Effects of herding

medium

- Dark room with two exits
- Changing the level of herding

No herding

Total herding

Collective motion

Patterns of motion of similar, interacting organisms

Cells

Flocks, herds, etc

A simple model: Follow your neighbors !

$$\vec{v}_{j}(t+1) = v_{0} \frac{\left\langle \vec{v}_{i}(t) \right\rangle_{R}}{\left| \left\langle \vec{v}_{i}(t) \right\rangle_{R} \right|} + \eta_{j}(t)$$

•absolute value of the velocity is equal to v_0

- new direction is an average of the directions of neighbors
- plus some perturbation $\eta_i(t)$
- Simple to implement
- analogy with ferromagnets, differences:

for $v_0 << 1$ Heisenberg-model like behavior

for $v_0 >> 1$ mean-field like behavior

in between: new dynamic critical phenomena (ordering, grouping, rotation,..)

Mexican wave (La Ola)

Phenomenon :

- A human wave moving along the stands of a stadium
- One section of spectators stands up, arms lifting, then sits down as the next section does the same.

Interpretation: using modified models originally proposed for <u>excitable media</u> such as heart tissue or amoebea colonies

Model:

- three states: excitable, refractory, inactive
- triggering, bias
- realistic parameters lead to agreement with observations

Swarms, flocks and herds

- Model: The particles

 maintain a given velocity
 follow their neighbours
 motion is perturbed by
 - fluctuations

• <u>Result:</u>

oredering is due to motion

Acknowledgements

Principal collaborators:

Barabási L., Czirók A., Derényi I., Farkas I., Farkas Z., Hegedűs B., D. Helbing, Néda Z., Tegzes P.

Grants from: OTKA, MKM FKFP/SZPÖ, MTA, NSF

Social force:"Crystallization" in a pool

Major manifestations

Pattern/network formation :

- Patterns: Stripes, morphologies, fractals, etc
- Networks: Food chains, protein/gene interactions, social connections, etc

Synchronization: adaptation of a common phase during periodic behavior

Collective motion:

- phase transition from disordered to ordered
- applications: swarming (cells, organisms),

segregation, panic

vissza

t = 0N = 200 V0 = 5

t = 0N_in = 90 V0 = 5

Nincs követés

t = 0N_in = 90 V0 = 5

Közepes követés

t = 0N_in = 90 V0 = 5

Teljes követés

Motion driven by fluctuations

Molecular motors:

Protein molecules moving in a strongly fluctuatig environment along chains of complementary proteins

Our model: Kinesin moving along

microtubules (transporting cellular organelles).

"scissors" like motion in a periodic, sawtooth shaped potential

Translocation of DNS through a nuclear pore

Transport of a polymer through a narrow hole Motivation: related experiment, gene therapy, viral infection Model: real time dynamics (forces, time scales, three dimens.

duration: 1 ms Lengt of DNS: 500 nm

duration: 12 s **Length of DNS :** 10 μm

A simple model: Follow your neighbors!

$$ec{v}_j(t+1) = v_0 rac{\langle ec{v}_i(t)
angle_R}{|\langle ec{v}_i(t)
angle_R|} + \eta_j(t)$$

- absolute value of the velocity is equal to v_0
- new direction is an average of the directions of neighbors
- plus some perturbation $\eta_j(t)$
- Simple to implement
- analogy with ferromagnets, differences

for $v_0 \ll 1$ Heisenberg-model like behavior

for $v_0 \gg 1$ mean-field like behavior

• in between: new dynamic critical phenomena (ordering, grouping, rotation, etc)

EQUATION OF MOTION for the velocity of pedestrian i

$$m_i rac{dec{v_i}}{dt} = m_i rac{v_i^0(t)ec{e}_i^0(t) - ec{v_i}(t)}{ au_i} + \sum_{j(
eq i)} ec{f_{ij}} + ec{f_{iW}},$$

 $ec{f_{ij}} = \left[A_i \exp[(r_{ij} - d_{ij})/B_i] + kg(r_{ij} - d_{ij})
ight]ec{n}_{ij}$

$$+\kappa g(r_{ij}-d_{ij})\Delta v^t_{ji}\,ec t_{ij}\,,$$

"psychological/social", elastic repulsion and sliding friction force terms, and g(x) is zero, if $d_{ij} > r_{ij}$, otherwise is equal to x.

MASS BEHAVIOUR

$$ar{e}^0_i(t) = N\left[\left(1-p_i
ight) ar{e}_i + p_i \left< ar{e}^0_j(t)
ight>_i
ight],$$

where $N(\vec{z}) = \vec{z} / \|\vec{z}\|$ denotes normalization of \vec{z} .

Collective motion

Ordered motion (Kaba stone, Mecca)

