Quantum Interference of Individual Quantum Systems (and their Use in Quantum Communication)

EPS-12 Budapest 2002

Anton

Zeilinger Universität

Wien, Austria

www.guantum.at

Steps in Individual Quantum Systems Experimentation

- 1. First Demonstrations of Feasibility
- 2. Realization of Historic Gedanken Experiments

- 3. New unforeseen Possibilities
- 4. Ideas for New Information Technology
- 5. Exploring the Limits

Vienna

Vienna

Entanglement

University Vienna Quantum Information Applications

Moores Law: Exponential Increase of Transistors on a Chip

Year:	Elektrons/Bit:	
now	~100	
+ 10	~10	
+ 20	~1	

The Age of Quantum Information Applications Begins

Quantum Computer Quantum Communication Quantum Teleportation

Entanglement and Quantum Communication

- Quantum Cryptography
- Quantum Dense Coding
- Quantum Teleportation
- Entanglement Swapping
- Teleportation of Entanglement

Schlüssel: 51840 Bit, Bit Fehlter Wahrsch. 0.4 %

Recent Results:

- Quantum Teleportation of an Entangled Photon
- Quantum Repeaters for Long-Distance Quantum Communication

Experimental Qutrit (and QuNit) Entanglement

• Quantum Communication with Higher Alphabets

Entanglement in Systems of Dimension >2

- Photon External Angular Momentum
- Bell Test for N = 3 i.e. Qutrits

Alois Mair, Alipasha Vaziri, Gregor Weihs

External angular momentum of photons

0

Vienna

- Laguerre-Gaussian "Doughnut" modes possess external (,,orbital") angular momentum.
- Quantized in Multiples of *ħ*

Holograms with dislocations m=1

- Diffraction at a dislocation with multiplicity m into the n-th order will change the LG mode index by n x m
- Appropriate Blazing can transfer nearly 100% into the first order

Projection onto the Gaussian Mode

- Fiber mode is approximately Gaussian
- All other modes cannot propagate inside fiber
- Together with the hologram we can project onto **any** LG mode

Measurement of University Superpositions of Doughnut Modes

Vienna

 $\theta = \phi$

Superposition!

Vienna

Experimental Qutrit Bell Test

- 4-axis scan of horizontal hologram positions
- Look for violation of qutrit inequality in scan data

Alipasha Vaziri et. al.

+1 - 1

PRL submitted

Experimental violation of ^{University} qutrit Bell inequality

Vienna

Quantum Nature of Qubit Teleportation

• Bell Inequality Violation in Entanglement Swapping

Thomas Jennewein, Gregor Weihs, Jian-Wei Pan

Long-Distance Teleportation Quantum Repeater

Photon 2 is Teleported to Photon 4Photon 3 is Teleported to Photon 1

Vienna

Delayed – Choice Teleportation

Photon 1 and 4 Become Entangled after They Became Registered!

Relational Bits!

Testing Bell's Inequality with Teleported Entanglement

$$S(\alpha, \alpha', \beta, \beta') = = |E(\alpha, \beta) - E(\alpha, \beta')| + |E(\alpha', \beta) + E(\alpha', \beta')| \le 2$$

Experimentally

$$S(0^{\circ}, 45^{\circ}, 22.5^{\circ}, 67.5^{\circ}) =$$

= $|0.6281 - (+0.6766)| + |-0.5748 - 0.5407| =$
= $2.420 \pm 0.091 \le 2$

Matter-Wave Interferences

- Electrons
- Neutrons
- Atoms
- Small Molecules
- Is there a Limit?
- Mass?
- Complexity?
- Temperature?

Macromolecule Interference

- New Dimensions New Physics
- Nanoscale Lithography
- Quantum Interference for Biological Macromolecules
- Transition to Classical Objects?
- Decoherence Studies

Fullerene Interference

M. Arndt et. al. Nature 401, 680-682, 14. October 1999

Experimental Setup

Fullerene Interference Pattern

Fit: simple Fraunhofer wave model

The Scale

$$\lambda_{dB} \approx 3 \times 10^{-12} m$$

Diameter: $C_{60} \approx 10^{-9} \text{ m}$

Coherence Length: 2 - 5 λ_{dB} !

No Which-Path Information in Environment

Heisenberg Uncertainty for Macromolecules

Vienna

- Measurement by Diffraction at a Narrow Slit
- Prepares Coherent Wave Fronts

 $\Delta \mathbf{x}$

-W_{exp} -

20

13-

0

750

600-

450

300-

150

-40

-20

0

counts (25 sec)

Smaller Slit Width

University

Vienna

Larger Momentum **Spread**

position (µm)

40

= 1.4 µm

= 17 µm

Heisenberg Uncertainty

Talbot-Lau Interferometer

Near-Field interferometer for macromolecules

Decoherence studies

•Study influence of

-van der Waals interactions

-Collisions with rest gas

•Best choice for even larger macromolecules

•Scaling ~ sqrt (M)

Talbot-Lau Interferometer

The Interferometer Setup

Interference Fringes

Vienna

University

Interference Fringe Contrast

Collisional Decoherence

Collisional Decoherence

Biomolecule Interference

Porphyrin A = 614 amu

- Meta-Tetraphenyl-Porphyrin
- Formula: C₄₄ H₃₀ N₄ (TPP)
- Mass: 614 amu
- Planar central structure
- Tilted phenyl rings
- 228 vibrational modes!

University

Vienna

Porphyrin Interference

The Role of Porphyrin

Heme

Are there Limits for Macroscopic Matter Waves?

Mass?

Complexity?

C₂₅₄H₃₇₇N₆₅O₇₆S₆

Insulin (~ 6 kDa)

CdSe nanocrystal (> 10 kDa)

GFP (~ 27 kDa)

The Molecule Group

Arndt

Keller

Nairz

Voss-Andreae

v.d. Zouw

Petschinka Hackermüller

Brezger

Reiger

Stibor

Hornberger

Our Phantasy ???

University

Vienna

Erwin Schrödinger

