Exotic Nuclei and Radioactive Beams at High Energy

T. Aumann

Gesellschaft für Schwerionenforschung

- ★ Introduction / Experimental concept
- ★ Results: two examples
 - knockout reactions with halo nuclei
 - electromagnetic scattering of n-rich nuclei
- ★ Future developments

1

Reactions with Light Neutron-Rich Nuclei

Scattering Experiments with High-Energy Secondary Beams

 $(1 - 10000 \, s^{-1}) ---$

0.6 < v/c < 0.8

Physics Aspects:

 $p/A \sim 1 \text{ GeV/c} > p_{Fermi} \implies$ sudden process short interaction time \implies high Fourier components σ_{NN} lowest at $\sim 400 \text{ MeV} \implies$ reduced re-scattering low transverse momentum \implies Eikonal approximation transverse Coulomb field (essentially dipole excitations)

Experimental Aspects:

Thick targets (~g/cm²) ==> increased luminosity
4π solid angle coverage (projectile rapidity)
100% detection efficiency (even for neutrons)
--- compensating low beam intensity

<u>GSI</u>: up to 1 GeV/u

Other Laboratories

(up to $\sim 100 \text{ MeV/u}$):

GANIL / France MSU / U.S. RIKEN / Japan

The GSI Accelerator Facilities

Experimental Scheme: II. Separation in FLIGHT

H. Geissel et al., NIM B 70 (1992) 286

Experimental Scheme: III. Setup LAND@GSI

The Large Area Neutron Detector LAND

Nucl. Instr. Meth. A314 (1992) 136

Experimental Observables

Measured:

- Momenta of projectile reaction products (fragment, neutrons, charged particles)
- -γ-rays

Deduced Observables:

- => momentum and energy transfer
 - > projectile excitation energy (invariant mass)
 - > fragment excited states after breakup (γ-rays)
 - momentum / angular correlations
 - (differential) cross sections (<u>if > ~ 10 100 mbarn</u>)

Typical Reactions:

- (in-) elastic scattering
- quasi-free scattering (knockout)
- Coulomb breakup on high-Z target (Pb..)

One-Nucleon Knockout: a Spectroscopic Tool

Sudden process Reaction: $\Delta t \approx 10^{-22}$ s Internal motion: $\approx 10^{-21}$ s

9

calculation

 $\Rightarrow \mathbf{P}_{\text{frag}} = -\mathbf{P}_{\text{n}}$

 \Rightarrow measurement of wave function (at the surface: $b_c > r_c$)

Neutron removal from individual single-particle states: ${}^{11}\text{Be} \rightarrow {}^{10}\text{Be} (I^{\pi}) + \gamma + X$

Data: S800@MSU, T.Aumann et al., PRL 84 (2000) 35

¹²Be: Breakdown of the N=8 Shell Closure

¹²Be (@78 Mev/u) + ${}^{9}Be \rightarrow {}^{11}Be(I^{\pi}) + \gamma + X$

Momentum distributions

Data: S800@MSU, A. Navin et al., PRL 85 (2000) 266

Knockout to Continuum States

Data: LAND-FRS@GSI, D. Aleksandrov et al., NPA 633 (1998), L. Chulkov et al., PRL 79 (1999) 201

12

Structure of 2n-halo nuclei, spectroscopy of unbound states, see talk by Haik Simon

Dipole Response of Exotic Nuclei

Low-Lying E1 Strength of Weakly Bound Nuclei

Wave function: e.g. $|^{11}Be > = \alpha |^{10}Be(0^+) \otimes 2s_{1/2} > + \beta |^{10}Be(2^+) \otimes 1d_{5/2} > + ...$

Shape of differential cross section

- γ -ray coincidence \Rightarrow
- \Rightarrow angular momentum *I*
- \Rightarrow identification of core state
 - **Cross section** \Rightarrow **spectroscopic factor**

14

Coulomb Breakup of ¹¹Be: The Classical One-Neutron Halo

 $|^{11}\text{Be}\rangle = \sqrt{S(2^+)} |^{10}\text{Be}(2^+) \otimes 1d_{5/2} \rangle + \sqrt{S(0^+)} |^{10}\text{Be}(0^+) \otimes 2s_{1/2} \rangle + \dots$

Data: LAND-FRS@GSI

R. Palit et al., to be published

Consistent experimental results:

p(¹¹Be,¹⁰Be)d, GANIL, S. Fortier et al.

Knockout reaction, MSU, T. Aumann et al. 15

Magnetic moment, ISOLDE, W. Geithner et al.

Coulomb breakup of ¹⁷C

⇒ Dominant ground state configuration
 I¹⁶C(2⁺)⊗v_{s,d}>
 ⇒ ground-state spin I^π = 1/2⁺ excluded

Data: LAND-FRS@GSI 16

U. D. Pramanik et al., subm. to Phys. Lett

Dipole Strength Distribution of n-Rich Nuclei

Low-Lying E1 Strength of n-Rich Oxygen Isotope

 \Rightarrow Integrated strength below the GDR

LAND-FRS Collaboration (S135, S188)

Göteborg/Aarhus

L.Axelsson, C.Forssen B. Jonson, K.Markenroth, T.Nilsson G.Nymann, K.Riisager

TU Darmstadt

M.Pantea A.Richter G.Schrieder, H.Simon

LMU München

P.Reiter

Madrid, Santiago MJG. Borge, D. Cortina, O.Tengblad. LAND: T.Aumann U.D.Pramanik H.Emling K.Jones P.Adrich

H.Geissel M.Hellström G.Münzenberg K.Sümmerer F.Nickel

Kurch, Moscow

L.Chulkov, I.Mukha

D.Aleksandrov

Pribora

U. Krakow

R.Kulessa E.Lubkiewicz, A.Kliemkiewicz W.Prokopowicz W.Walus, W.Wajda

U. Mainz

K.Boretzky LeHong Khiem J.V.Kratz, C.Nocifo

U.Frankfurt Th.W.Elze, S.Ilievsk A.Leistenschneider R.Palit

The New GSI Accelerator Facility for Beams of Ions and Antiprotons

A New In-Flight Exotic Nuclear Beam Facility

R³B: A next-generation experimental setup for Reaction studies with Relativistic Radioactive Beams

EU-project: Enhancing Access to Research Infrastructures Improving Human Potential Programme

Collaboration:
 GSI (coordination)
 GANIL, France
 Chalmers University, Sweden
 University Giessen, Germany
 University Krakow, Poland
 CEA Saclay, France
 TU München, Germany
 Univ. Santiago de Compostela, Spain

★ Total Cost: 1.6 M€ EU funds: 0.8 M€

Tasks

- Super-conducting fragment separator
- High-power production target
 - Large-acceptance magnetic spectrometer
 - Liquid-hydrogen target
 - Advanced detector systems
- High-speed data-acquisition

Simulations of keynex of a might

A large-acceptance SUPERconducting FRragment Separator SUPER-FRS

Facility	Δp/p	$\Delta \Phi_{\rm x}$	$\Delta \Phi_{y}$	Resolving Power
FRS $(B\rho_{max} = 18 \text{ Tm})$	±1%	± 13 mrad	± 13 mrad	1500 for 20 π mm mrad
Super-FRS ($B\rho_{max} = 20 \text{ Tm}$)	± 2.5 %	\pm 40 mrad	± 20 mrad	1500 for 40 π mm mrad

R³B: A next-generation experimental setup for Reaction studies with Relativistic Radioactive Beams

Kinematically complete measurements of reactions with secondary beams

- ★ Electromagnetic excitations ➤ single-particle structure ➤ soft modes ➤ GDR
 ► B(E2) ➤ astrophysical S-factor
- ★ Knockout / quasi-free scattering ➤ single-particle structure ➤ unbound states
- ★ Charge exchange (p,n) ➤ GT strength ➤ spin dipole resonance ➤ neutron skin
- **★** Other reactions: Fission, Fragmentation, Multifragmentation, Spallation

A Large-Acceptance Spectrometer for R³B

Superconducting coils

- Active shielding
- * High field integral
- Large acceptance

Phase 1: Design study (completed)

- ✓ Design report available
- ✓ Positive evaluation by international review committee
- ✓ Funding: EU (R³B)

Phase 2: Model coil

- \Rightarrow Test of superconductor
- \Rightarrow Test mechanical stress
- \Rightarrow Test of quench-protection system

♦ Phase 3: Construction of full-size magnet ²⁵

Experiments with Low-energy and Stopped beams

 Decay spectroscopy
 Reactions near the Coulomb barrier

Laser spectroscopy

Ion traps

Experiments at Storage Rings

 Mass measurements
 Reactions with internal targets
 Elastic p scatt.

► (p,p') (α,α')

► transfer

Electron scattering
 elastic scattering
 inelastic

Conclusion

- Reactions of high-energy radioactive beams are a powerful tool i investigating the structure of short-lived exotic nuclei, even at lowest beam intensities
 - Examples discussed:
 - knockout reactions
 - ► single-particle structure, unbound states, correlations
 - electromagnetic excitations
 - signt-resonance strength, single-particle structure, soft collective modes ?

* The future project at GSI

higher intensities

(primary beam intensity, efficient separation, transportation and injection of radioactive beams into storage rings)

new experimental methods and concepts

(e.g. reactions in storage rings, light hadron scattering,

e⁻ - scattering, ...)