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Performance of human ear

Frequency analysis:   responds selectively to frequencies in 
  range 20−10,000 Hz

Sensitivity:   faintest audible sounds impart no more
  energy than thermal noise: 4 zJ

Dynamic range:   responds and adapts over 7 orders of 
  magnitude of pressure: 0−140 dB



Detection apparatus
sources: Hudspeth, Hackney
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Mechano-chemo-electrical transduction
sources: Corey, Hudspeth

Tension in tip links
pulls open
transduction channels
& admits K+

which depolarizes the
membrane & opens
voltage-gated channels
to nerve synapse



Spontaneous oscillations in the inner ear
Kemp ‘79
Manley & Koppl ‘98

•  Otoacoustic emissions

Crawford & Fettiplace ‘86
Howard & Hudspeth ‘87

•  Active bundle movements

25 nm

25 nm

the ear can sing



Camalet, Duke, Jülicher & Prost ‘00

Active amplifiers: Ear contains a set of nonlinear dynamical systems
         each of which can generate self-sustained oscillations

           at a different characteristic frequency

Self-adjustment:     Feedback control mechanism maintains each system
          on the verge of oscillating

        

Self-tuned critical oscillators
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Hopf bifurcation

remarkable response properties at critical point



force:

displacement:

control parameter:  C          bifurcation point: 

Hopf resonance

gain diverges
for weak stimuli

•    stimulus at characteristic frequency:



force:

displacement:

control parameter:  C          bifurcation point: 

Hopf resonance

active bandwidth

•    stimulus at different frequency:

    if



  critical Hopf resonance
  single tone response

Gain and active bandwidth depend on level of stimulus
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Response to a tone

• spontaneous critical
oscillations are incoherent

• stimulus at
characteristic frequency
gives rise to phase-locking

  critical Hopf response
  effect of noise



Hair bundle response
Martin & Hudspeth ‘01

           Response of a frog hair bundle
          forced by a microneedle



Questions

•   What is the physical basis of the force-generating dynamical
    system ?

•   How is the self-tuning realised ?

We might expect that different organisms use different
apparatus to implement the same general strategy

   Model for non-mammalian vertebrates



Two adaptation mechanisms

Fast process

Ca2+ binding to
transduction channel

~ 1 ms Slow process

movement of
myosin-1C motors

~ 100 ms

Fettiplace et al. ‘01



Channel gating compliance
Howard & Hudspeth ‘88; Martin, Mehta & Hudspeth ‘00

Suppose channel incorporates a lever arm
opening of channel can substantially reduce the tension in the tip link

• negative elasticity if



Vilfan & Duke

• Oscillations generated by
interaction of Ca2+ with
transduction channels

frequency

depends on bundle geometry

Physical basis of self-tuned critical oscillators

Ca2+

motors

ωc ≈
1

τ m echτ ca

Self-tuning accomplished 
by movement 
of molecular motors, 
regulated by Ca2+

•



  hair bundle model
  self-tuned critical oscillations

   stimulus



Nonlinearities due to active amplification

Self-tuned Hopf bifurcation is ideal for detecting a single tone …

… but it causes tones of different frequency to interfere

Response to two tones:



Two-tone suppression

Presence of second tone can extinguish the nonlinear amplification

= 0 � 0



Distortion products
Julicher, Andor & Duke ‘01

Nonlinearities create a characteristic spectrum of distortion products



  distortion products
  analysis

Responses at f1 and f2 couple to frequency 2f1 - f2

... which in turn excites a hierarchy of further distortion products:

Spectrum: ,

,



Mammalian cochlea

basilar membrane

cochlea

inner hair cell

tectoral membrane

basilar membrane



  Cochlear travelling wave

• sound sets fluid into motion

• variation in flow rate is accommodated by movement of
membrane

• membrane acceleration is caused by difference in fluid
pressure

oval window

round window
helicotrema



Zwislocki ‘48

  membrane displacement h
  pressure difference p = P1 - P2

  difference in flows j = J1 - J2 

• fluid flow

• incompressibility

• membrane response

       wave velocity

  travelling wave
  one-dimensional model
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  Basilar membrane motion
Rhode ‘71; Ruggero et al. ‘97

BM response
is nonlinear



Outer hair cell motor
Brownell ‘85; Ashmore ‘87

Outer hair cells are electromotile

prestin

Dallos et al. ‘99outer hair cells



Duke & Jülicher

Critical oscillators ranged along basilar membrane
  characteristic frequencies span audible range:

  membrane is an excitable medium with a
  nonlinear active response

Active basilar membrane

p
_

(ω)= A(x,ω)h
_

+B |h
_

|2 h
_

ωc(x)= ω0e
−x/d

K(x)= A(x,0)= α ωc(x)

A(x,ωc(x))=0

A(x,ω)= α(ωc(x)−ω)
B = iβ

captures essence of active membrane



  active travelling wave
  cochlear tuning curve

Precipitous fall-off on high frequency side owing to
critical-layer absorption



  active travelling wave
  cochlear tuning curve

Ruggero et al. ‘97
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Summary

• Active amplification by critical oscillators is ideally suited to
the ears needs:
frequency selectivity, exquisite sensitivity, dynamic range

• Spontaneous hair-bundle oscillations may be generated by
transduction channels and regulated by molecular motors

• Critical oscillators that pump the basilar membrane give rise
to an active travelling wave with a sharp peak

• Many psychoacoustic phenomena may be related to the
nonlinearities caused by active amplification

• 1


