Multi-particle emission

Symposium on

Approaching the Drip-line for Unstable Nuclei

Budapest 29 August 2002

H.O.U. Fynbo

Department of Physics, University of Aarhus, Denmark

Århus-Göteborg-Madrid-Darmstadt collaboration

Decay Modes Near the Driplines

Decay Q-values increase and separation energies decarease

Break-up to Multi-particle Final States

Experimental techniques

- I SOL method
- \bullet $\beta\text{-decay}$ to populate state of interest
- clean and selective
- Use DSSSDs for complete kinematics
- Large solid angle (rare events)
- High Segmentation (avoid summing)
- Effective Readout

Kinematics of 2p-transition

Properties of states in ¹²C

Width \leftrightarrow Decay \leftrightarrow Structure

The triple- α reaction rate

Known Break-up Properties

E _{level} /MeV	Jπ	Γ_{level}	⁸ Be (0+)	⁸ Be (2 ⁺)
7.6542(15)	0+	8.5(1.0) eV	>96%	<4%
9.641(5)	3-	34(5) keV	>96%	<4%
10.3(3)	0+	3.0(7) MeV	>90%	<10%
10.849(25)	1-	315(25)keV	Strong	Yes
11.828(16)	2-	260(25)keV	No	Yes
12.710(6)	1+	18.1(2.8) eV	No	Yes
13.352(17)	2-	375(40)keV	No	Yes
14.083(15)	4+	258(15)keV	17(4)%	83(4)%
15.110(3)	1+	43.6(1.3) eV	No	Yes

natural/un-natural parity

Breakup of the 12.71 MeV state in ¹²C

R-matrix based sequential break-up with order-of-emission interference Tohru Takahashi Phys. Rev. **C**16 (1977) 529

Faddeev equations with a separable Potential describing the α - α interaction.

A.A. Korshenninikov Sov. J. Nucl. Phys. 52 (1990) 827

Hyperspherical Harmonics expansion. Simultaneous emission. Multiplicity-3 data - Analysis June 2002

The 12.71MeV state: Individual energies for M2

The Nature of the "10Mev" State

Unbound states in ⁹B from ⁹C β-decay

The future: ¹²B

 $\mathbf{0}$ +

 Dedicated measurement of the β -decay of ¹²B for the question of O^+ and 2^+ states in ${}^{12}C$

-¹²B can be produced indirectly via ¹²Be - Very high yield

IS404 October 2002

Summary and Outlook

•Far from β -stability exotic decay modes become dominating • β -decay a natural way to reach unbound states

