

Quantum Communications at telecom wavelengths

Nicolas Gisin Hugo Zbinden Toni Acin, Claudio Bareiro, Sylvain Fasel, J.-D. Gautier, Ivan Marcikic, Hugues de Riedmatten, Valerio Scarani, André Stefanov, Damien Stucki, Sébastien Tanzilli, Robert Thew, Wolfgang Tittel,

GAP-Optique, University of Geneva

Q crypto over 67 km

Time-bins: \Rightarrow high dimensions \Rightarrow robustness of non-maximally entangled qubits \Rightarrow Q teleportation at telecom λ

The plug&play setup

QC over 67 km, QBER $\approx 5\%$

+ aerial cable (in Ste Croix, Jura) !

3

Company established in 2001

- Spin-off from the University of Geneva

Products

 Quantum Cryptography (optical fiber system)

Alice

- Quantum Random Number Generator
- Single-photon detector module (1.3 μ m and 1.55 μ m)
- Contact information

email: info@idquantique.com

web: http://www.idquantique.com

The qubit sphere and the time-bin qubit

- qubit: $|\psi\rangle = c_0 |0\rangle + c_1 e^{i\phi} |1\rangle$
- different properties : spin, polarization,
 <u>time-bins</u>
- any qubit state can be created and measured in any basis

 depending on coupling ratio and phase \$\overline{\phase}\$, maximally and non-maximally entangled states can be created

Arbitrary high dimensions

20

40

60

Partially Entangled Time-Bin Qubits

Teleportation of a time-bin qubit equatorial states

Teleportation of a time-bin qubit North&South poles

Long distance quantum teleportation

Results for long distance teleportation

Quantum teleportation as Q repeater (even without Q memory)

Conclusion

- **qubits and entangled qubits can be realized using time-bins.**
- entangled qudits in arbitrary high dimension d can be realized.
- partially entangled qubits are robust over 11 km.
- Q teleportation

 with:
 telecom wavelength

 = the possibility to teleport the ''ultimate structure'' of an object from one place to another, without the object ever being anywhere in between
 - *two different crystals (spatially separated sources)*
 - □ from one wavelength (1300 nm) to another (1550 nm)
 - □ *first time with time-bins (ie insensitive to polarization fluctuations)*
 - over 2 km of fiber and 55 meters of physical distance
 - \neg mean fidelity : $\approx 81\%$ both in the lab and at a distance