Cold atoms in microtraps and near surfaces

E.A. Hinds

Budapest, August 2002

This talk is about miniaturising atom optics

• 2-wire atom waveguide

Videotape atom chip

1) The 2-wire atom waveguide

Our first guide had 4 wires in a glass fibre

PRL. 84, 1371 (2000)

The 2-wire atom guide

with Chris Vale and Matt Jones

Hollow silica fibre fabricated at the ORC, Southampton University

Basis for a de Broglie wave interferometer

Contours of **|B**|

Add a horizontal uniform field

Great potential for coherent splitting

Hinds, Vale, and Boshier PRL Feb 2001

Splitting the Ground State $\psi(0,0)$

Horizontal bias field increases to make horizontal splitting

Interferometry

This device may have spectacular sensitivity to

- GravityEM fields
- Other feeble forces

The output ports are the (0,0) and (1,0) vibration states of the guide.

The 2-wire interferometer at SCOAP

The Mirror MOT

Loading the guide

Mirror MOT1 108 atoms70 μK

Magnetic trap2 107 atoms70 μK

Compressed
Magnetic trap2 107 atoms510 μK

Evaporating to the ground state

At ~350 nK our atoms suddenly go into the ground state (BEC)

the interferometer should now be ready, however

.... the atoms interact with the copper wire

the cloud breaks up when lowered

These wells are ~1µK deep

If the cloud is allowed to expand along the guide, some atoms are trapped in wells

These have ~ $230 \,\mu m$ spacing

Similar lumps recently seen above Cu wires by Ketterle group [cond-mat/0203214] Zimmerman group [cond-mat/0205310] Zimmerman *et al.* also see a shortening of lifetime

These effects are not yet understood

2) Videotape atom chip

Sinusoidally magnetised videotape makes an atom mirror

A bias field corrugates the mirror

and makes an array of atom guides

Magnetic Mirror Fabrication

- 1995: flat audio tape mirrors
- 1997: curved floppy disk mirrors

1999: high-quality curved video tape mirrors

- Single wide track on 12mm camcorder tape
- $\lambda \sim 10 \,\mu\text{m}$ and surface field $B_0 \sim 1000 \text{ gauss}$
- good linearity

Bouncing atoms on the chip

a

angen och står och

smooth reflector (bias field = 0)

9

corrugated reflector (bias turned on)

PRA 61 R31404 (2000) with Peter Rosenbusch, Brenton Hall, Ifan Hughes and Carlos Saba

and now for microtraps on videotape:

this videotape chip has a 250 microtraps on it

Loading atoms into a videotape microtrap

with Brenton Hall and Jocelyn Retter

collect atoms in mirror MOT

Absorption images of loading a microtrap

surface

surface

Videotape does not break the cloud into lumps

Atom loss from the microtrap

Videotape does not cause atom loss

BEC can be prepared and manpulated $30\mu m$ from a surface.

Microscopic atom interferometer chips seem close, however . . .

• copper wires

have a surprise interaction & seem to cause loss

• videotape microtraps work really well