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Outline

● What is quantum computing?
● How to do quantum computing with NMR
● What has been done?
● What are we trying to do?
● How far can we go?

● J. A. Jones, PhysChemComm 11 (2001)
● J. A. Jones, Prog. NMR Spectrosc. 38, 325 (2001)
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What could we do with one?

● Easy to do the calculations, but hard to get the
answers out from the resulting superposition!

● Simulate quantum mechanics
● Factor numbers: Shor’s algorithm

» The end of public key cryptography?
» Generalises to the Abelian Hidden Subgroup problem

● Speed up searches: Grover’s algorithm

● QC is not the answer to everything!



How might we build one?

● To build a quantum computer you need

● quantum two level systems (qubits),
● interacting strongly with one another,
● isolated from the environment, but
● accessible for read out of answers etc.

● See Fortschritte der Physik 48, 767-1138 (2000)
» Scalable Quantum Computers - Paving the Way to Realization,

S. L. Braunstein and H.-K. Lo



Nuclear Magnetic Resonance

● Conventional liquid state NMR systems (common in
chemistry and biochemistry labs)

● Use two spin states of spin-1/2 nuclei (1H, 13C, 15N,
19F, 31P) as a qubit

● Address and observe them with RF radiation
● Nuclei communicate by J couplings
● Conventional multi-pulse NMR techniques allow

gates to be implemented
● Actually have a hot thermal ensemble of computers



NMR experiments



NMR Hamiltonians

● Usually written using “product operators”.  For two
coupled spins

● Can apply RF pulses, with good control of amplitude,
frequency and phase.  Normally work in a frame
rotating at the RF frequency.  For a single spin
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Typical frequencies (14.4T)

● For a 1H nucleus (magnets are usually described by their 1H
NMR frequency)

● For a 13C nucleus

● For a 19F nucleus

● J couplings lie in the range of 1Hz–1kHz

0 1600MHz 3kHz, 25kHzν = ± ν ≤

0 1150MHz 15kHz, 15kHzν = ± ν ≤

0 1565MHz 50kHz, 25kHzν = ± ν ≤



Single Qubit Rotations

● Single spin rotations are implemented using resonant
RF pulses

● Different spins have different resonance frequencies
and so can be selectively addressed

● Frequency space can become quite crowded,
especially for 1H (other nuclei are much better)



Controlled-NOT (CNOT) gates

● The controlled-NOT
gate flips the target bit
(T) if the control bit (C)
is set to 1
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CNOT and SPI (1973)

Selective Population Inversion: a 180° pulse applied to
one line in a doublet is essentially equivalent to CNOT

180°



Hamiltonian Sculpting

● Combine periods of evolution under the background
Hamiltonian with periods when various RF pulses are
also applied

● The Average Hamiltonian over the entire pulse
sequence can be manipulated

● In general terms can be scaled down or removed at
will, and desired forms can be implemented

● Highly developed NMR technique
● Ultimately equivalent to building circuits out of gates



The spin echo

● Most NMR pulse sequences are built around spin
echoes which refocus Zeeman interactions

● Often thought to be unique to NMR, but in fact an
entirely general quantum property

● Interaction refocused up to a global phase
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CNOT and INEPT (1979)
The CNOT propagator can be expanded as a sequence
of pulses and delays using a standard NMR approach…
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… to give a pulse sequence very similar to an INEPT
coherence transfer experiment
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Molecules and algorithms

● A wide range of
molecules have been
used with 1H, 13C, 15N,
19F and 31P nuclei

● A wide range of
quantum algorithms
have been implemented

● Some basic quantum
phenomena have been
demonstrated



State of the art

● Shor’s quantum factoring algorithm to factor 15

Nature 414, 883 (2001)



The initialisation problem

● Conventional QCs use single quantum systems
which start in a well defined state

● NMR QCs use an ensemble of molecules which start
in a hot thermal state

● Can create a “pseudo-pure” initial state from the
thermal state: exponentially inefficient

● Better approach: use para-hydrogen!



Two spin system
● A homonuclear system of two

spin 1/2 nuclei: four energy
levels with nearly equal
populations

� Equalise the
populations of the
upper states leaving
a small excess in the
lowest level



Two spin system
● A homonuclear system of two

spin 1/2 nuclei: four energy
levels with nearly equal
populations

� Equalise the
populations of the
upper states leaving
a small excess in the
lowest level

A “pseudo-pure” state

Excess population is
exponentially small



para-hydrogen

● The rotational and nuclear spin states of H2
molecules are inextricably connected by the Pauli
principle

● Cooling to the J=0 state would give pure para-
hydrogen with a singlet spin state

● Cooling below 150K in the presence of an ortho/para
catalyst gives significant enhancement of the para
population

● Enhancement is retained on warming if the
ortho/para catalyst is removed



Using para-hydrogen
● para-hydrogen has a pure

singlet nuclear spin state
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� Can’t do computing with this directly because the H2
molecule is too symmetric: we need to break the
symmetry so that we can address the two nuclei
individually



Vaska’s catalyst

● Add the p-H2 to some
other molecule, e.g.
Vaska’s catalyst
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� The two 1H nuclei now
have different chemical
shifts and so can be
separately addressed



Tackling systematic errors

● Quantum computers are vulnerable to errors
● Random errors can be tackled using advanced forms

of error correcting codes
● Systematic errors can be tackled using various

approaches for robust coherent control

● The traditional NMR approach (composite pulses)
has already proved productive



Tycko composite 90 sequence

● Tycko’s composite 90° pulse
3850·320180·250 gives good
compensation for small off-
resonance errors

● Works well for any initial state,
not just for z

● Now generalised to arbitrary
angles

● New J. Phys. 2.6 (2000)



Pulse length errors

● The composite 90° pulse
11562·180281·11562 corrects for
pulse length errors

● Works well for any initial state,
not just z

● Generalises to arbitrary angles
● More complex sequences give

even better results
● quant-ph/0208092



How far can we go with NMR?

● NMR QCs with 2–3 qubits are routine
● Experiments have been performed with up to 7

qubits; 10 qubits is in sight
● Beyond 10 qubits it will get very tricky!

» Exponentially small signal size
» Selective excitation in a crowded frequency space
» Decoherence (relaxation)
» Lack of selective reinitialisation
» Lack of projective measurements
» Fortschritte der Physik 48, 909-924 (2000)
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