Fracture and fragmentation of disordered solids

Ferenc Kun

Department of Theoretical Physics University of Debrecen, Debrecen, Hungary

Raul C. Hidalgo, Hans J. Herrmann Institute for Computational Physics University of Stuttgart, Stuttgart, Germany

Yamir Moreno

International Center for Theoretical Physics, Trieste, Italy

Henriett Szabó

Department of Theoretical Physics University of Debrecen, Debrecen, Hungary

Loading of a disordered solid

Quasistatic loading

Dynamic loading

Disorder

- → structural
- → physical

Fracture

- → Quasistatic process
- → Stress localization
- → One main crack
- → Breaking into two pieces

Fragmentation

- → Dynamic process
- → Shock waves
- → Many cracks
- → Breaking into many pieces
 Fragments: m << M</p>

Schedule

- → Fragmentation of brittle solids (rocks, ceramics, concrete)
 - Experiments
 - Discrete element model
 - Computer simulations
- → Creep rupture of fiber reinforced composites
 - Experiments
 - Fiber bundle models
 - Computer simulations

Shooting a projectile into a solid

High speed cameras

Measurables:

- → Fragment size
- → Fragment velocity

Experimental results

Different materials

-different way of fragmentation

Power law size distribution of fragments independent of

→ Material

→ Way of imparting energy

→ Length scale

Universality

Craters of the Moon

Power law size distribution of asteroids

Theoretical treatment

Disorder + Many interacting cracks

ļ

Discrete element method

Computer simulations

Monte Carlo & Molecular dynamics

Model construction

Two dimensional model of deformable, breakable granular solids

- Granularity:
- -randomly shaped convex polygons model grains
- -polygons can overlap each other
- Elastic behavior:
- restoring force between overlapping polygons
- -polygons are connected by elastic beams
- Breaking of the solid:
- -breaking criterion for beams

Granular structure: Voronoi construction

Voronoi tessellation with controllable disorder

Single cell

Parameter 0<a<1 controls the amount of disorder

Tessellation of a 20x20 sample

Cutting out various shapes

Square with a smooth surface

Circles cut out of a square

Controlling the amount of disorder

a=0 ⇒ Square lattice anisotropic

Increasing disorder

a=1 ⇒ Random lattice isotropic

Contact force

Overlapping particles

Overlap represents local deformation of contacting particles

Contact force

$$\vec{F}_{ij} = -\frac{YA}{L_c}\vec{n}$$

A: overlap area

Y: Young modulus

L: characteristic length

Beams attached to the polygons

Center of mass of polygons are connected by beams

Polygon-beam system

Random lattice of beams

The beam model

Deformation of a beam

Elongation, compression, shear, bending

Beam equations

$$F_x^1 = A(x_1 - x_2)$$

$$F_y^1 = B(y_1 - y_2) + \frac{Bl}{2}(\Theta_1 + \Theta_2)$$

$$M_z^1 = \frac{Bl}{2}(y_1 - y_2 + l\Theta_2) + Dl^2(\Theta_1 - \Theta_2)$$

A, B, D: material dependent constants

Beam breaking --- crack formation

Overstressed beams break

Breaking criterion:

$$\left(\frac{\epsilon}{t_{\epsilon}}\right)^2 + \frac{\max(|\Theta_1|, |\Theta_2|)}{t_{\Theta}} \geq 1$$

 t_{ϵ} , t_{θ} : breaking thresholds

Molecular dynamic simulations

Equation of motion of polygons in two dimensions

$$m_i \ddot{\vec{r}_i} = \sum_j \vec{F}_{ij}$$

$$I_i \ddot{\Theta}_i = \sum_j M_{ij}^z$$

Numerical solution:

5th order Predictor-Corrector scheme

Simulations:

- · Initial condition
- Boundary condition
- Stopping condition

Explosion of a disc-shaped solid

Initial condition

Initial velocities

Circular symmetry

$$\sum_{i} \vec{p_i} = 0$$

Outgoing compression wave

Time evolution of explosion

Snapshots of the process

Fragment size distribution

Varying the breaking thresholds t and t

Power law size distribution

$$F(m) \sim m^{-\tau}$$

$$\tau = 2.0 - 2.5$$

Projectile shooting

Time evolution of the process

Collision of solids

- → Collision of particles in a granular flow
- → Planetary rings
- → Collisional evolution of asteroids, space debris

Initial condition

- Only central collisions
- Varying the initial velocity

Damage --- Fragmentation

 $M_{max} \sim M_o$

Damage

 $M_{max} << M_o$

Fragmentation

Damage --- Fragmentation

Energy release

Mass distribution

Damage - - ➤ Critical point - - ➤ Fragmentation

Continuous phase transition

Control parameter: energy of collision

Order parameter: mass of the largest fragment

Order parameter exponent B

$$\frac{M_{max}}{M_o} \sim |\eta - \eta_c|^{\beta}, \quad \eta < \eta_c$$

Gap scaling

$$F(m) \sim m^{-\tau} f(m^{\sigma} \epsilon)$$

$$\tau = 2.27 \pm 0.05$$

$$\beta = 0.11 \pm 0.02$$

Fiber reinforced composites

C-SiC

Wood

Two components: fiber + matrix

Creep rupture

Main Goals

Models

- Analytical and numerical
- Detailed description of microstructure and stress redistribution
- Damage histories in terms of microscopic parameters

Universal aspects

- Independent of specific material properties
- Helps to evaluate experimental data and simulations
- Statistical physics of rupture

Model of Creep rupture

Bundle of viscoelastic fibers

Wood

(G. Dill-Langer, S. Aicher)

Viscoelastic fiber: Kelvin element

Two parameters: β, E

$$\sigma_0 = \beta \dot{\varepsilon} + E\varepsilon$$

$$\varepsilon(t) = \frac{\sigma_o}{E} \left[1 - e^{-Et/\beta} \right] + \varepsilon_0 e^{-Et/\beta}$$

Rupture of bundles

Strain controlled breaking of fibers

- \times P(ε) breaking threshold
- * Load redistribution

$$\frac{\sigma_0}{1 - P(\varepsilon)} = \beta \dot{\varepsilon} + E \varepsilon$$

Coupling of breaking and viscoelasticity In a global load sharing framework

Rupture of bundles

Strain controlled breaking of fibers

- \times P(ε) breaking threshold
- * Load redistribution

$$\frac{\sigma_0}{1 - P(\varepsilon)} = \beta \dot{\varepsilon} + E \varepsilon$$

Coupling of breaking and viscoelasticity In a global load sharing framework

Analytic solution

Two regimes

- -no stationary state
- -monotonically increasing deformation
- -global failre at finite time
- macroscopic stationary state
- -only partial failure
- -infinite lifetime

Approaching the critical point

Relaxation by decreasing breaking activity

τ: relaxation time

$$\tau \sim (\sigma_{_{\rm c}} - \sigma_{_{\rm o}})^{-1/2}$$

Universal power law divergence

Approaching the critical point

$$\sigma_{_{0}} > \sigma_{_{c}}$$

Global failure at finite time

t: time to failure

$$t_f \sim (\sigma_o - \sigma_c)^{-1/2}$$

Universal power law divergence

Process of breaking

- fibers break one-by-one

- single avalanche of breaks

$$\varepsilon_1 < \varepsilon_2 < \dots < \varepsilon_N, \quad i = 1, \dots, N$$

Time between two breakings:

$$\begin{array}{lll} \Delta t_i & = & -\frac{\beta}{E} \ln \left[\left(\varepsilon_{i+1} - \frac{\sigma_i}{E} \right) / \left(\varepsilon_i - \frac{\sigma_i}{E} \right) \right] \\ \\ \sigma_i & = & \frac{\sigma_o N}{N-i} \end{array}$$

Sensitivity to the details of load redistribution

Structure of a single avalanche

Distribution of interevent times

Power law distribution

$$f(\Delta t) \sim \Delta t^{-b}$$

Exponent

$$b = 1.95 \pm 0.05$$
 For $\sigma_{o} < \sigma_{c}$

$$b = 1.5 \pm 0.05$$
 For $\sigma_o > \sigma_c$

Self organization in creep

Macroscopic scale

- steady external driving
- emergence of a stationary state
- separation of time scales

Microscopic scale

- local overloads
- relaxation by breaking
- threshold dynamics

Power law distribution

$$f(\Delta t) \sim \Delta t^{-b}$$

Conclusions

- → Fragmentation of brittle solids
 - Universal power law behavior
 - Continuous phase transition
- → Creep rupture of fiber composites
 - Scaling laws
 - Self organization