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LLoading of a disordered solid

Quasistatic loading Dynamic loading
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Fracture

2 Quasistatic process
< Stress localization
=< One main crack

2 Breaking into two pieces

Fragmentation

2 Dynamic process
= Shock waves
2 Many cracks

2 Breaking into many pieces

Fragments: m <<M_



Schedule I

2 Fragmentation of brittle solids (rocks, ceramics, concrete)

® Experiments
® Discrete element model

® Computer simulations

2 Creep rupture of fiber reinforced composites
® Experiments

® Fiber bundle models

® Computer simulations



Shooting a projectile into a solid

High speed cameras

Measurables:
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Experimental results

| Different materials . Ty _
—different way of fragmentation Power law size distribution

of fragments independent of
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Craters of the Moon

Craters of various sizes Size distribution

— Power law size distribution of asteroids



Theoretical treatment

Disorder + Many interacting cracks

|

Discrete element method

!

Computer simulations

Monte Carlo & Molecular dynamics



Model construction

Two dimensional model of deformable, breakable granular solids

* Granularity: —randnmly_sflaped convex polygons model grain
~polygons can overlap each other

« Elastic behavior: ~restoring force between overlapping

polygons
—polygons are connected by elastic beams

« Breaking of the solid: (“breaking criterion for beams)




Granular structure: Yoronoi construction

Voronoi tessellation with controllable disorder

Single cell Tessellation of a 20x20 sample

square lattice
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Cutting out various shapes I

Square with a smooth surface Circles cut out of a square
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a=0.001

a=[.8

Controlling the amount of disorder

a=0.4

a=0.99

a=(0 = Square lattice
anisotropic

Increasing disorder

a=1 = Random lattice
isotropic



Contact force

Overlapping particles

Overlap represents local deformation
of contacting particles

Contact force

v A A : overlap area
- TP Y : Young modulus
r s " .
: L, L. : characteristic length




Beams attached to the polygons

Center of mass of polygons Polygon—beam system
are connected by beams

Random lattice of beams



Deformation of a beam Beam equations
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Beam breaking ——p crack formation

Overstressed beams break

Breaking criterion: - f—”—”“?”' Oal) 5
e

Successive breaking
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Molecular dynamic simulations

Equation of motion of polygons in two dimensions

Numerical solution:
5" order Predictor—Corrector scheme

Simulations: * Initial condition
* Boundary condition

* Stopping condition



Explosion of a disc—shaped solid

Initial condition
Circular symmetry

):ﬁ‘=0

Outgoing compression wave

Initial velocities



Time evolution of explosion

Snapshots of the process

Crack growth and

Uncorrelated crack nucleation
coalescence



Fragment size distribution I

Varying the breaking thresholds t and t
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Projectile shooting

['ime evolution of the process

delaminated layer

Fragment size distribution
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Collision of solids

2 Collision of particles in a granular flow
2 Planetary rings
2 Collisional evolution of asteroids, space debris

Initial condition

a Only central collisions

a Varying the imtial velocity



Damage — Fragmentation

Moo ~ M, Mopo: << M,

Damage Fragmentation



Damage ——p Fragmentation I

Energy release Mass distribution
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Continuous phase transition

Control parameter: energy of collision

Order parameter: mass of the largest fragment

Order parameter exponent |3 Gap scaling
... _ :
.ll.f“ il ) 1", 7 < T Fli.rnil}:]' ~ T Tf{,l}'i‘”{}
[ Y .
3 W g r = 227+40.05
:., r ._._ 1
=, "ﬁe__ 2 | 5] 0.11 + 0.02
Lo | f
e



Fiber reinforced composites

C=Si(C Wood

Two components: fiber + matrix
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— Several possible mechanisms

— Material dependence

Creep rupture

acoustic activily




Main Goals

[ Models J [ Universal aspects ]
*Analytical and numerical *Independent of specific material
properties
* Detailed description of _
microstructure and stress *Helps to evaluate experimental

redistribution data and simulations

* Damage histories in terms of  «Statistical physics of rupture
MICroscopic parameters







Viscoelastic fiber: Kelvin element

B [ oo = PBe + E¢
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Two parameters: 3, E




Rupture of bundles

Strain controlled breaking of fibers
x P(€) breaking threshold

* Load redistribution

ago
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Rupture of bundles

Strain controlled breaking of fibers
x P(€) breaking threshold

* Load redistribution

gdo
1 - P(¢e)

= Pe 4+ E¢
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Analytic solution
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I'wo regimes

—no stationary state

—monotonically increasing
deformation

—global failre at finmite time

~Macroscopic stationary
state

—only partial failure

—infinite lifetime



Approaching the critical point

O <0

Relaxation by decreasing
breaking activity

T: relaxation time
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Universal power law divergence
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Approaching the critical point

Global failure at finite time

[ : time to failure
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Ev4 Universal power law divergence
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A ¢ e 04 : Time between two breakings:
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- single avalanche of breaks *
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Sensitivity to the details of load redistribution




Structure of a single avalanche




Distribution of interevent times

Pujﬁer la_w distribution

f(at) ~ at™

flAL)

Exponent

b=195+0.05 For 0 <0

b=15+0.05 For >0



Self organization in creep

Macroscopic scale Microscopic scale
— steady external driving — local overloads
~ emergence of a stationary state — relaxation by breaking
— separation of time scales — threshold dynamics

Power law distribution

f(At) ~ At™?



Conclusions

2 Fragmentation of brittle solids
® Universal power law behavior

® Continuous phase transition

2 Creep rupture of fiber composites
® Scaling laws

® Self organization



