

Exploring the Rugged Conformational Energy Landscape of Proteins

Gerd Ulrich Nienhaus Department of Biophysics, University of Ulm, Germany, Department of Physics, University of Illinois at Urbana-Champaign

Proteins - Paradigms of Complex Systems

Systems

- Biomolecules
- Glass-forming liquids
- Synthetic polymers
- Spin glasses

Essential Properties

- Distributed physical parameters
- Wide range of time scales
- Nonlinearity
- Non-Arrhenius temperature dependence

Rugged energy landscape

conformational coordinate

Building blocks:

Primary structure:

Secondary structure:

Proteins backbone 20 different amino acids sidechain peptide (covalent) bonds

hydrogen bonds

Tertiary structure:

Hb

Sequence determines 3D fold

3D interactions:

- hydrophobic
- van der Waals
- H bonds / ionic / S-S

Protein Folding

- Huge number of possible chain conformations (~10¹⁵⁰ for a protein with 150 amino acids).
- Folding decreases number of available conformations substantially.
- The native fold is <u>not</u> unique, but contains a large number of conformational substates.

Energy Landscape of Folded Proteins

Energy Landscape Governs Structure Function Structure Dynamics Theoretical Approaches •Computer Simulations

•Experiment

F₁ ATP Synthase $ADP + P_i = ATP + H_2O$

Random Energy Landscape

Dynamical Transition at T \approx **180 K**

Conformational Changes - Temperature Dependence

System	Process	logA _A [s ⁻¹]	E _A [kJ/mol]	logA _F [s ⁻¹]	E _F [kJ/mol]	T range [K]
MbCO L29W	$A_{I} \leftrightarrow A_{II}$	20	74	12.5	9.0	210-300
MbCO native ¹	$\begin{array}{c} A_0 \leftrightarrow A_1 + A_3 \\ A_1 \leftrightarrow A_3 \end{array}$	22.7 30.7	94 114	11.7 16.2	9.3 9.8	180-300
RC ²	CS0 CS1	25 21	110 78	11.7 10.6	9.9 7.8	180-300
BPTI	Tyr 35 ring flip ³ W 122 res. time ⁴	24.3 19.4	138 90	12.6 11.7	13.3 10.7	277-350

¹Johnson et al., Biophys. J. 71, 1563 (1996).
²McMahon et al., Biophys. J. 74, 2567 (1998).
³Otting et al., Biochemistry 32, 3571 (1993).
⁴Denisov et al., Nature Struct. Biol. 3, 505 (1996).

Computational Approaches

Conformational analysis of isobuturyl-Ala₃-NH-CH₃ (IAN, flexible tetrapeptide)

Czerminski & Elber, PNAS 86 (1989) 6963. Becker & Karplus, JCP 106 (1997) 1506.

Hierarchical tree of conformations from a 5.1 ns MD simulation of crambin

Garcia et al., Physica D 107 (1997) 225.

Configuration space projections from SVD analysis of 1 ns myoglobin MD trajectory

Andrews et al., Structure 6 (1998) 587.

Go Berendsen Di Nola

Experimental Studies

Hans Frauenfelder, UIUC (1985) Hierarchical energy landscape

Taxonomic substates (IR, Raman)

Statistical substates (nonexponential ligand binding)

(Hole burning, specific heat)

Conformational Dynamics at Physiological Temperature

conformational coordinate

Myoglobin

- Function: storage and transport of oxygen
- Molecular weight: 17.8 kD
- Size: $\sim 45 \times 35 \times 25 \text{ Å}^3$
- Structure: 153 aa, 8 α helices, 1 heme group

Mutant Myoglobins

L29W myoglobin binds ligands extremely slowly at room temperature

Flash Photolysis

CO Infrared Bands – Taxonomic Substates

X-Ray Cryo-Crystallography

Nd:YAG CW LASER; 532nm; max. 300mW

Fourier Transform

Ostermann, A., Waschipky, R., Parak, F. G. & Nienhaus, G. U., Nature 404 (2000) 205-208.

Structures of A Substates

wild type MbCO

mutant MbCO L29W

Yang & Phillips, J. Mol. Biol. 256 (1996) 762 – 774. Johnson et al., Biophys. J. 71 (1996) 1563-1573. Müller et al., Biophys. J. 77 (1999) 1036 – 1051. Ostermann et al., Nature 404 (2000) 205-208.

CO Primary Docking Site (T < 40 K)

Femtosecond IR spectroscopy Lim et al., Nature Struct. Biol. 4 (1997) 209 – 214.

Photoproduct x-ray structures:

Schlichting et al., Nature 317 (1994) 808. Teng et al., Nature Struct. Biol. 1 (1994) 701. Hartmann et al., PNAS 93 (1996) 7013.

MD simulations:

Vitkup et al., Nature Struct. Biol. 4 (1997) 202. Ma et al., JACS 119 (1997) 2541. Meller & Elber, Biophys. J. 75 (1998) 789.

Low Temperature CO Rebinding

Ligand Migration to Alternative Docking Sites in L29W

<u>T < 180 K:</u>

Ligand movements in the frozen protein.

T > 180 K:

Ligand migration and concomitant structural changes in the protein.

Secondary Docking Sites – Xenon Cavities

Xenon cavities: Tilton et al., Biochemistry 23 (1984) 2849

MD simulations: Elber and Karplus, J. Am. Chem. Soc. 112 (1990) 9161

Ligand Migration Studies

Characterization of Reaction Intermediates

0.08 - B2 - C' А. 0.06 - C' Absorbance **-** D 0.04 0.02 0.06 🔶 В **-**С ---- D 0.04 Absorbance 0.02 2115 2120 2110 2125 2130 2135 2140 2145 2150 Wavenumber (cm-1)

- Structure
- IR Spectra (E-fields, CO dynamics)
- Energetics of ligand binding
- Role of A substate interconversions

Summary

- Proteins possess a rugged energy landscape
 - Huge number of ~isoenergetic conformational substates
 - Energy barriers distributed in height
 - Dynamics on essentially all time scales
 - Dynamics over wide temperature range
 - Non-Arrhenius temperature dependencies
 - Hierarchy of Substates
 - Taxonomic substates
 - Statistical substates
- Model protein myoglobin
 - Energy landscape exploration by
 - Cryocrystallography
 - IR spectroscopy
 - Kinetics

Acknowledgments

Andreas Ostermann Fritz Parak

Alessandro Arcovito Maurizio Brunori

Aninda Bhattacharyya Pengchi Deng Jan Kriegl Don C. Lamb Karin Nienhaus Carlheinz Röcker Uwe Theilen Robert Waschipky

technische Universität München

