Thomas Nilsson, CERN EP/IS

EPS-12 Trends in Physics, Budapest August 29 2002

Why study the atomic nucleus?

- A few-body system of hadrons (neutrons and protons) with many remaining question marks
- "Largest" system where strong and weak interaction are manifested
- "Applications"
 - Astrophysics
 - Condensed matter
 - Energy
 - Medicine

NUCLEAR PHYSICS EXPANDS IN THREE DIMENSIONS

AND ASTROPHYSICS

RIB - Production reactions

Radioactive beams – production and separation

In-flight production (e.g. FRS@GSI)

ISOL target

Resonant LASER Ion Source

World Wide Radioactive Beam Facilities

Halo nuclei at ISOLDE

¹¹Be

mass measurements of ¹¹Li

D. Lunney

Mass measurement of ¹¹Li at *ISOLDE* with *MISTRAL*

¹²⁹⁽²⁰⁰⁰⁾⁶⁷

¹¹Li, charged particles

Beta-delayed neutrons from ¹⁴Be

$$P_n = \Sigma i P_{in} = 101(4) \%$$

 $P_{2n} + 3P_{3n} = 0.8(8) \%$

ISOLDE Physics programme 2001

CKM (Cabibbo-Kobayashi-Maskawa) matrix unitarity

SM:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Exp.: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9968 \pm 0.0014$

 \rightarrow unitarity is violated by 2.2σ

New physics or bad corrections? Test at extreme -> ⁷⁴Rb

... and later ⁶²Ga

Condensed matter physics

Radioactive ions as "spies" (PAC) in high- T_c superconductors...

M. Deicher, Europhysics News (2002) Vol. 33 No. 3

Biomedical Research at ISOLDE

- Example: samarium isotopes
- in vivo dosimetry by positron emission tomography (PET) 142-Sm (ϵ , T_{1/2} = 72m) \Rightarrow 142-Pm (β_+ , T_{1/2} = 40s) therapy 153-Sm (β_- , T_{1/2} = 47h)

PET scan of a rabbit 60 min p.i. of ISOLDE produced 142-Sm in EDTMP solution

IS393 - Nuclear properties in r-process vicinity

Post-acceleration

NUCLEAR PHYSICS EXPANDS IN THREE DIMENSIONS

d(⁹Li,¹⁰Li^{*})p using REX-ISOLDE

Ideas for exotic probes for RIB (RAMA@ECT*)

- p-bar antiprotonic atoms
 - Intersecting storage ring with 10⁹ p-bar stored
 - Electron cooling on both rings
 - Multi turn injection
 - Merging reactions
- μ⁻ muonic atoms
 - Cyclotron trap (PSI)
 - Hydrogen layer (RIKEN-RAL)
 - Storage ring

Conclusions

- RIB are crucial in widening our understanding of the nuclear system when stretching the parameters
- Low-energy RIBs with good beam quality is the optimal starting point for decay studies, laser physics, traps etc.
- RIB overcome partly the fact that we now only have the stable and long-lived "ashes" of astrophysical processes
- RIB and techniques used in the production and separation have important connections to other research fields
- Large physics output obtained with "first-generation" RIB facilities time to make a major step forward

Acknowledgements

- Collaborations:
- IS304 (Mainz, Leuven, Montreal, CERN)
- IS320 (Aarhus, CERN, Darmstadt, Gothenburg, Madrid, Orsay)
- IS367 (Gothenburg , Aarhus, Madrid, CERN, Darmstadt, Örebro)
- IS374 (Caen, Gothenburg, Aarhus, Madrid, Troitsk, Orsay, Mainz, CERN, Darmstadt)
- IS376 (Gothenburg , Aarhus, Madrid, Stockholm, CERN, Darmstadt)
- IS402 (Orsay, GSI, MSU, Munich, CERN, Sao Paulo)