Quantum Optics with single Nano-Objects

Outline:

- Introduction : nonlinear optics with single molecule
- Single Photon sources
- Photon antibunching in single quantum dot fluorescence
- Conclusion

ADVANTAGES

- No ensemble averaging
- Statistical correlations
- Extreme sensitivity to immediate local nanoenvironment
- No synchronisation needed, time evolution
- Single quantum system

Inhomogenous spectrum at 2 K

Pump-probe experiments:

- Light Shift
- Hyper-Raman Resonance

Electro-Optical Effects

Linear Stark Shift: $\Delta \mu \sim 0.3 D$

Linear Coupling with the RF field $\hbar \Omega_{RF} = \Delta \mu \cdot E_{0RF}$

- 1st case: High RF field, low laser intensity

Modulation of the molecular transition frequency

Modulation of the laser frequency

 $\omega_{\rm RF} = 80 \, \rm MHz$

2nd case: High laser intensity, low RF field

Shift of the Rabi resonance function of the laser field amplitude

Triggered Single Photon Sources

Practical need for Single Photons:

Quantum Cryptography:

* Quantum mechanics provide unconditional security for communication

* Encoding information on the polarization of single photons

Quantum computing:

Quantum logic gates based on single photons have been demonstrated

Present day sources of single photons

- Correlated photon pairs
 - * Atomic cascade
 - * Parametric down conversion
- Highly attenuated laser (or LED) pulses

Problems:

- Random time generation
- Average photon's number <<1

Present day sources of single photons

Use of a single quantum system

Yamamoto's group experiment:

- Coulomb Blockade in a mesoscopic double barrier p-n junction
- temperature 50 mK (dilution cryostat)
- low detection efficiency $\sim 10^{-4}$
- low e-h recombination rate

Photon antibunching in single molecule fluorescence

Controlled excitation of a single molecule Deterministic generation of single photons

Excitation: Rapid adiabatic passage

g,n+1>

Two conditions:

Adiabatic passage
$$T_{pass} > T_{Rabi}$$

Rapid passage
$$T_{pass} \ll \tau_{f}$$

 $\Omega_L >> \Gamma$

Detailed shape of a fluorescence burst

- T = 250 ns, $\Omega = 3 \Gamma$, $\delta_0 = 80 \Gamma$
- Short rise time
- Relaxation time ($\Gamma^{-1} \approx 8 \text{ ns}$)
- Oscillations

How many emitted photons per sweep?

Measurement of the autocorrelation function $g^{(2)}(\tau)$ Comparaison with Q.M.C. simulations Histogram of time delays:

 $v_{\rm RF} = 3 MHz, \, \Omega_{\rm L} = 3.2 \, \Gamma$

Comparaison with a Coherent source

- $\nu = 6$ MHz, $\delta_0 = 44\Gamma$
- $-n_{av} = 1.12$

$$- p(1) = 0.68$$

-
$$p(n>1) \sim 0.21$$

Q _{sour.}= - 0.65 Q_{detc.}= - 0.006

Room Temperature Single photon source

Principe de l'expérience

- Pulsed excitation to a vibrationnaly excite level
- Rapid Relaxation (ps) to the fluorescent state
- Emission of a single photon

Experimental setup

- Inverted Microscope
- Piezo-electric Scanner
- Coincidence Setup
- Detection effeciency 6%

System: Terrylene in p-terphenyl Favorable photophysical parameters and high photostability

Confocal fluorescence image(10µm*10µm) of single Terrylene molecules

CW Excitation : Photon Antibunching

Fluorescence autocorrelation function $g^{(2)}(\tau)$ proportional to the excited state population, $\tau > 0$:

$$\Pi(\tau) = \frac{I/I_s}{1+I/I_s} \cdot \{1 - \exp[-(1+I/I_s) \cdot \tau/\tau_f]\}$$

Signature of a single molecule emission

Pulsed excitation : Triggered single photon emission

- M.L. 532 nm laser: - Pulse width: 35ps, - Repetition rate: v = 6.25 MHz - Single exponential decay - fluorescence lifetime: $\tau_f = 3.8$ ns

Fluorescence autocorrelation Function

Laser spot positioned
on a single molecule (Signal/Background~ 6)
(b) Away from any molecule (background coherent emission)

central peak area / lateral peak area = (B²+2BS) / (B+S)² ~ 0.27

Saturation du taux d'émission

Short laser pulse : $\tau_p << \tau_f$ $p(2) \sim 0$ $p(1) = \Pi(\tau = \tau_p)$ **Emission rate:** $S = \eta \nu p(1) = S_{\infty} \Pi(\tau_p)$

At the maximum power : S_{max}=310 kHz, p_{max}(1)=0.86

86% of the pulses lead to a single photon emission

Comparaison with a coherent source

 $-n_{av} = 0.86$

$$- p(1) = 0.86$$

$$-v = 6.25 \text{ MHz}$$

 $Q_{sour.} = -0.86$ $Q_{detc.} = -0.03$ $- P(n>1) < 8 \ 10^{-4} \ !$

Photon statistics of single quantum dot fluorescence

- QDs bridge the gap between single molecules and bulk solid state
 Size-dependent optical properties
- Tunable absorbers and emitters
- Applications from labeling to nano-devices

- Colloidal CdSe/ZnS quantum dots
- 2 nm Radius, 575 peak emission
- fluorescence quantum yield ~50%, $\epsilon \sim 10^5 \text{ M}^{-1} \text{ cm}^{-1}$

Intermittence in single QD Fluorescence

- High S/B ratio - Low photobleaching rate $\phi_{blea} < 10^{-8}$

Blinking:

t_{on}, Intensity dependence t_{off}, no I dependence, inverse power law

- Blinking attributed to Auger ionization

Photon antibunching in single QD fluorescence

- Start-Stop setup

- Coincidence histogram $C(\tau)$ (TAC time window t_{TAC} of 200 ns, bin width t_{bin} of 0.2 ns)

Dip at $\tau=0$, signature of a strong photon antibunching

C(0) ~ 0 for a large range of intensities (0.1 – 100 kW/cm²)

High Auger ionization rates (~1/20 ps⁻¹, Klimov et al.)

No multi-excitonic radiative recombination

Quantum dot lifetimes measurements

Single QDs measurements at low intensities

$$C(\tau) = G^{(2)} \propto 1 - \exp(-\tau/\tau_f)$$

 Experimental accuracy ~ ns
 Width of τ_f histogram : heterogenety in the QDs structure !?

Bulk measurement with TCSPC (M. Dahan et al., 2000) Multi-exponential decay

Saturation intensities: $I_{sat} \sim 10-80 \text{ kW/cm}^2$ Cross-section : $\sigma_{abs} \sim 2 - 16 \ 10^{-16} \text{ cm}^2$

Count rate saturation

- At high intensities, very short t_{on} , average count rate R_{av} skewed
- Use coincidence histogram for accurate value R_{av} in the On state
- With large t_{TAC} and high R_{av} , τ ~ interphoton mean time (1/ $R_{av})$

$$C(\tau) = G^{(2)}(\tau) \exp(-R_{av}\tau)$$

Good agreemeny For the measured I_{sat}

Conclusion

- Demonstration of a single photon source based on controlled fluorescence from single molecule
- Room temperature operation
- Improve the collection efficiency de collection (cavity...)
- Other systems:

* NV centers (antibunching observed)

* Quantum dots : at low T (<5K) antibunching in spectrally selected fluorescence from InAs QDs

- Photon antibunching in colloidal CdSe QDs Efficient Auger ionization effect