2002 Agilent Technologies Europhysics Prize Lecture

on

Quantum Dynamics of Nanomagnets

Bernard Barbara, L. Néel Lab, Grenoble, France Jonathan R. Friedman, Amherst College, Amherst, MA, USA Dante Gatteschi, University of Florence, Italy Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France

Budapest 26/08/2002

the miniaturization process

Single Domain Particles coherent rotation of all the spins

Quantum effects in the dynamics of the magnetization

First evidences of Quantum Tunneling in nanosized magnetic particles

(difficulties due to size distribution)

Quantum Coherence in ferrihydrite confined in the ferritin mammalian protein

(inconclusive due to distribution of iron load)

The molecules are regularly arranged in the crystal

Mn12acetate

high spin molecules

and low spin molecules

 $H=-DS_z^2+g\mu_BH_zS_z$

J. Villain et al. Europhys. Lett. 1994, 27, 159

Temperature dependence of the relaxation time of Mn12acetate

Sessoli et al. *Nature* 1993, *365*, 141

Mn12acetate: Hysteresis loop

High Spin Clusters

Single Molecule Magnets

Barbara et al. J. Magn. Magn. Mat. 1995, 140-144, 1825

return to the equilibrium tunnel mechanism

terms in S_x and S_y of the spin Hamiltonian

return to the equilibrium tunnel mechanism

terms in S_x and S_y of the spin Hamiltonian

What is the difference?

Four fold axis Tetragonal (E=0)

What is the difference?

 $H = \mu_{B} S.g.B - D S_{z}^{2} + E (S_{x}^{2} - S_{y}^{2}) + BS_{z}^{4} + C (S_{+}^{4} + S_{-}^{4})$

Four fold axis Tetragonal (E=0) Two fold axis Rhombic (E≠0)

Hysteresis loops for Mn₁₂

Hysteresis loops for Mn₁₂

Uniform spacing between steps

Enhanced Relaxation at Step Fields

Enhanced Relaxation at Step Fields

Tunneling occurs when levels in opposite wells align.

Hamiltonian for Mn_{12} = $-DS_z^2 - g\mu_B \mathbf{S} \cdot \mathbf{H}$

The field at which $|m\rangle$ (in the left well) crosses $|-m+n\rangle$ (in the right well): $H_{m,-m+n} = \frac{-Dn}{g\mu_B}$

Steps occur at regular intervals of field, as observed.

Step occurs every 4.5 kOe \Rightarrow D/g = 0.31 K

Compare with ESR data:

D = 0.56 K, g = 1.93 (Barra et al., PRB, 1997) **D**/g = 0.29 K

Hamiltonian for
$$Mn_{12}$$

= $-DS_z^2 - g\mu_B \mathbf{S} \cdot \mathbf{H} - BS_z^4$

Spectroscopic studies revealed a 4th-order longitudinal anisotropy term B ~ 1.1 mK. (ESR: Barra et al., PRB, 1997 and Hill et al., PRL, 1998; INS: Mirebeau et al., PRL, 1999, Zhong et al., JAP, 2000 and Bao et al., cond-mat, 2000)

 \Rightarrow Different pairs of levels cross at slightly different fields.

 \Rightarrow Allows for the Examination of the Crossover from Thermally Assisted to Pure Quantum Tunneling.

Crossover to Ground-state Tunneling

Level crossing fields:

$$H_{m,m'} = \frac{Dn}{g\mu_B} \left[1 + \frac{B}{D} (m^2 + m'^2) \right]$$

Abrupt "first-order" transition between thermally assisted and ground state tunneling.

Theory: Chudnovsky and Garanin, PRL, 1997; Exp't: Kent, et al., EPL, 2000, Mertes et al., JAP, 2001.

Applied Field (Tesla)

Fe₈ Hamiltonian in Zero Field

Spin wants to rotate in the y-z plane

Destructive Topological Interference

Equivalence between paths is maintained when **H** is applied along the Hard Axis.

Topological (Berry's) phase depends on solid angle Ω enscribed by the two paths.

Complete destructive interference occurs for certain discrete values of Ω .

Destructive Topological Interference

Modulation of Tunnel Splitting:

$$\Delta = \cos(S\Omega),$$

where Ω depends on the field along the Hard Axis.

When $S\Omega = \pi/2$, $3\pi/2$, $5\pi/2$..., tunneling is completely suppressed!

Interval between such destructive interference points:

$$\Delta H = \frac{2}{g\mu_B} \sqrt{2E(E+D)}$$

A. Garg., 1993.

W. Wernsdorfer and R. Sessoli, Science, 1999.

What Causes Tunneling and Why the Parity Effect in Fe₈

- Tunneling is produced by terms in the Hamiltonian that do not commute with S_z.
- For Fe_8 , these terms are

$$E(S_x^2 - S_y^2) = \frac{E}{2}(S_+^2 + S_-^2)$$

- Selection rule: $\Delta m = \pm 2p$ (*p* = 1,2,3,...)
- Every other tunneling resonance is forbidden!

What Causes Tunneling and Why the Parity Effect in Fe₈

n = 0

n = 1

Tunneling Allowed

Tunneling Forbidden

W. Wernsdorfer and R. Sessoli, Science, 1999.

Crossover From Classical to Quantum Regime (Mn₁₂-ac)

Barbara et al, JMMM 140-144, 1891 (1995) and J. Phys. Jpn. 69, 383 (2000) Paulsen, et al, JMMM 140-144, 379 (1995); NATO, Appl. Sci. 301, Kluwer (1995)

The Tunnel Window: An effect of weak Hyperfine Interactions

• Wernsdorfer et al, PRL (1999)

Effects of Strong Hyperfine Interactions:

Case of Rare-earth ions: Ho³⁺ in $Y_{0.998}Ho_{0.002}LiF_4$

Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (1978); N.I. Agladze et al, PRL, 66, 477 (1991)

Exchange-biased quantum tunnelling in a dimer of Mn₄ molecule

W. Wernsdorfer et al, *Nature* **416**, 406 (2002)

V₁₅ : The Archetype of Low spin Molecules

A Mesoscopic Spin S=1/2

Exchange interactions: Antiferromagnetic ~ several 10²K

Müller, Döring, Angew. Chem. Intl. Engl., 27, 171 (1988)

Anisotropy of g-factor: ~ 0.6% Ajiro et al, J..Low. Temp. Phys. to appear (2003) Barra et al,J. Am. Chem. Soc. 114, 8509 (1992)

Barbara et al, cond-mat / 0205141 v1; submited to PRL.

« Non-Isolated V_{15} » : A two-level system « with dissipation »

Low sweeping rate / Strong coupling to the cryostat

<u>Phonon-bath</u> → bottleneck model Abragam, Bleaney, 1970; Chiorescu et al, 1999.

Nuclear spin-bath → level broadening Stamp, Prokofiev, 1998.

Chiorescu et al, PRL 84, 3454 (2000)

V₁₅: a Gapped Spin ½ Molecule

Time Reversal Symmetry \rightarrow D = 0 (Kramers Theorem)

The Multi-Spin Character of the Molecule (15 spins)

+

Dzyaloshinsky-Moriya interactions: $H_{DM} = -\Sigma D_{ij}S_{i}XS_{i}$

Magnetism: From Macroscopic to Single atoms

Wernsdorfer et al. et al, PRL, 79, 4014, (1997)

Conclusion and Perspectives

Cross-spin transitions, Co-tunneling

Quantum Dysnamics Berry Phases

V₁₅

Acknowledgements

Univ. Florence & Modena:

Andrea Caneschi Claudio Sangregorio Lorenzo Sorace Angelo Rettori Anna Fort Andrea Cornia

L. Neél Lab. CNRS Grenoble

E. Bonet

I. Chiorescu

- R. Giraud
- L. Thomas
- C. Thirion
- R. Tiron

CCNY: Myriam Sarachik Yicheng Zhong

U. Barcelona:

Javier Tejada Joan Manel Hernandez Xixiang Zhang (now Hong Kong) Elias Molins

<mark>Xerox</mark> Ron Ziolo

Lehman College - CUNY Eugene Chudnovsky

Univ. Rio de Janeiro M. Novak Italian INFM

A. Lascialfari

F. Borsa

R. Caciuffo

G. Amoretti

M. Affronte

CNRS Grenoble

J. Villain A. L. Barra C. Paulsen V. Villar A. Benoit CNRS Bagneux D. Mailly Lehman College - CUNY Eugene Chudnovsky

Univ. Calif. - San Diego: David Hendrickson Sheila Aubin Evan Rumberger E. Yang

Los Alamos:

Rob Robinson (now ANSTO, Australia) Tim Kelley Heinz Nakotte Frans Trouw (Argonne) Wei Bao

Univ. Florida

N. Aliaga, S. Bhaduri, C. Boskovic, C. Canada, C._Sanudo, M. Soler, G. Christou Univ. P. et M. Curie, Paris V. Marvaud, M. Verdaguer,

Univ. Bielefeld H. Bögge, A. Müller

U. St. Petersburg A.M. Tkachuk

Univ. Manchester R.E.P. Winpenny

Univ. Kyoto H. Ajiro, T. Goto, S. Maegawa

Univ. Okkaido Y. Furukawa

Acknowledgements

- J. F. Fernandez
- A. Garg
- M. Leuenberger D. Loss,
- A. Mukhin
- S. Miyashita
- N.V. Prokof'ev

- A. Zvezdin
- L. J. de Jongh
- J. Schweizer
- P.C.E. Stamp
 - I. Tupitsyn