Unbound Nuclei

Short Range Correlations

Theory

 C_r : describes repulsive core \Leftrightarrow EOS

 C_{Ω} : tensor forces, density distribution correlated with spin orientation

high momenta/short range <> correlations
 small momenta/large range <> mean field

H. Feldmeier, T. Neff

Motivation

Reaction mechanisms

Inelastic scattering (2n)

Knockout reaction (1n)

γ gated longitudinal momentum distributions

Kinematically complete experiments (GSI)

Observables

- 1. Relative/Internal energy
 - Invariant mass method

• Energy correlation function (*event mixing*)

$$\mathcal{W}(\mathsf{E}) = rac{\mathsf{d}\sigma/\mathsf{d}\mathsf{E}}{\mathsf{d}\sigma/\mathsf{d}\mathsf{E}_{\mathsf{mixed}}}$$

2. Angular correlations (1n)

Relative energy

- New state at E₀=1.0(1) MeV, Γ_0 =0.75(8) MeV
- Spin orbit partner $J^{\pi}=1/2^{-}$ of the ⁷He ground state
- SO splitting reduced, ⁵He: 1.2 MeV, ⁷He: 0.6 MeV

M. Meister et al. PRL**88**(2002)102501

Angular correlations

Angular correlation

Angular Correlations vs. E

angular correlation (range)

Angular Correlations vs. E

¹⁴Be @ 287 AMeV

Conclusion/Outlook

- Groundstate of ⁸B comprises a 16(3)% admixture of ⁷Be^{*}
- Spin orbit partner of the ⁷He g.s. discovered
- Consistent picture for the ^{11,10}Li structure
- New input for the ^{14,13}Be description
- Recent experiment, September 2001 (S245)
 Cluster Structure ⇒ Quasilelastic Scattering

