
Updated version from Journal of Arti�cial Societies and Social Simulation,

vol. 5, issue 1, paper 4 (Feb. 2002), available at jasss.soc.surrey.ac.uk

How to convince others:

Monte Carlo simulations of Sznajd models

Dietrich Stau�er

Institute for Theoretical Physics, Cologne University

D-50923 K�oln, Euroland

www.thp.uni-koeln.de; stauffer@thp.uni-koeln.de

The Sznajd model in less than a year has found several followers. An isolated

person does not convince others; a group of people sharing the same opinions in-

uences the neighbours much more easily. Thus on a square lattice, with variables

+1 (Democrats) and {1 (Republicans) on every lattice site, a pair (or plaquette)

of neighbours convinces its six (eight) nearest neighbours of its own opinion if and

only if all members of the pair (plaquette) share the same opinion. The general-

ization to many possible states is used to explain the distribution of votes among

candidates in Brazilian local elections.
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1 Introduction

The involvement of physics research in social a�airs is quite old [1, 2, 3] but

seems to become fashionable now. Even backward Germany's physical soci-

ety founded a section on socioeconomic research, headed by Frank Schweitzer

[4]. Ising-type models have been reviewed in [5]. The present review deals

with the very modern Sznajd model [6] and its applications [7-14,17-19]. It

deals with the way how opinions spread in human society.

Empirical research has shown decades ago that a single person stopping

on the street and staring into the sky is mostly ignored by passers-by. If how-

ever several people together stare into the sky, they induce others to follow

them. The trade union movements follow a similar strategy: By uniting, the

employees have a stronger position against management than if everybody

tries to negotiate alone: \United we stand, divided we fall." Thus it is not

surprising that in Poland this principle was put into a computational model,

the Sznajd model [6], �rst in one and then in two dimensions [7]. We do

not deal here with all the variants but emphasize the more interesting ones.
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The next section looks at the basic model, then we check complications and

compare the results with the Ising model at low temperatures, and �nally we

bring a political application, the distribution of votes among candidates. The

crucial di�erence of the Sznajd model compared with voter or Ising models is

that information ows outward: A site does not follow what the neighbours

tell the site, but instead the site tries to convince the neighbours.

2 Basic Model

Each site of a one- or two-dimensional lattice carries a spin S which can

either be up (Republican) or down (Democrat) and represents one of two

possible opinions on any question. The Fortran program denotes the spin

by is = �1. Two neigbouring parallel spins, i.e. two neighbouring people

sharing the same opinion, convince their neighbours of this opinion. If they do

not have the same opinion, then either they do not inuence their neighbours,

or in one dimension [6] they bring their neighbours to the opposite position.

On the square lattice one may also demand that a plaquette of four sites,

instead of a pair of only two sites, must have all four opinions to agree in

order to convince the neighbours. We list the Fortran program for the case

where a pair of two neighbouring spins convinces the six neighbours if and

only if the two central spins have the same opinion (rule IIa of [7]).

Various other rules are de�ned and discussed in [7]. In all of them we

need a random selection of the next spin pair to be selected for trying to

convince its neighbours; otherwise the one-dimensional results are �xed by

the few �rst spins in the chain. (The updating is random-sequential; with

simultaneous updating instead, reaching a consensus is much more diÆcult.)

For these rules in one and two dimensions (and also for the majority of

alternative rules [7]) the system always ends up in a �xed point: Either all

spins point up, or they all point down in the square lattice. The antifer-

romagnetic rule in one dimension [6] in addition allows in half of the cases

an antiferromagnetic ordering of up, down, up, down etc. (In ferromagnets,

neighbouring magnetic dipoles want to align parallel, while in antiferromag-

nets, neighbours want to be opposite to each other.) The times needed

to reach this �xed point increase with lattice size and are distributed log-

normally or in a more complicated way, depending on the rule [7]. Thus

the problem is quite time consuming and does not allow to simulate even

medium-size lattices like 1000� 1000.
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Figure 1: Sznajd square lattice, with a parallel pair convincing its six neigh-

bours, after 1, 5 and 50 iterations. After 256 iterations the whole lattice was

empty (spin down).

Usually one starts with half of the spins up and half of the spins down. If

one varies the initial concentration p of up spins one sees a phase transition

in the above rule for the square lattice but not for the chain: The system

�nally has all spins down if p < 1=2 and all spins up if p > 1=2. In a �nite

lattice, of course, phase transitions are never sharp, and thus the transition

is indicated numerically by a slope (Fig.2) becoming steeper and steeper the

larger the lattice is. In an in�nite lattice one thus would get a sharp step

function for the number of up �xed points versus the initial concentration p.

This holds for both a regular square lattice [7] as for one where in a correlated

way a fraction of sites is removed [9].

During the simulation, some people change their opinion often, some sel-

domly, and a small fraction never. The number of people with opinions

unchanged up to time step t varies asymptotically [20] as 1=t�, with a per-
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Figure 2: Fraction of samples ending with all spins up, versus initial fraction

of up spins. 1000 samples L = 23 (+, 1000 samples), 53 (x, 1000 samples)

and 101 (*, 100 samples), on a correlated-diluted square lattice [9].

sistence exponent �(d) compatible for d = 1 with the exact 3/8 of the Ising

analog; in higher dimensions it is larger.

The original paper was restricted to one dimension [6], where also a \dis-

agreement function", somewhat similar to the energy in physics, describes

the dynamics of the system [19].

3 Variants

To avoid dictatorship (all spins parallel) one can introduce a small number

of non-conformists which are not convinced by the Sznajd rule [14]; see [6, 7]

for alternatives..

Just like the Ising ferromagnet can be studied on a regular or on a di-

luted lattice, the Sznajd model, discussed above for regular lattioces, can

also be studied in disordered systems. This is more realistic since human
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society does not follow a square lattice with every person having exactly four

neighbours. The simplest case is a randomly diluted square lattice, where

every site either is empty or carries one spin; this random occupation does

not change during the simulation. More realistic are long-range correlations

between the occupation of various lattice sites. Fortunately, in both cases

the results were very similar to those on regular lattices from the previous

section [9]. Long-range convincing strenghts, decaying with a power of the

distance, are being investigated by C. Schulze.

On the triangular and simple cubic lattice, if a pair of parallel neighbours

convinces its 8 (or 10, respectively) other neighbours of the pair opinion, the

results are similar to the square lattice: all lattices �nally have all spins par-

allel, after a time which is not distributed log-normally. And as a function of

the initial concentration we have a phase transition at 1/2. In the triangular

case, Chang [12] found at the end all spins parallel even for antiferromagnetic

interactions; in the Ising model we know that triangular antiferromagnets are

frustrated and thus complicated.

The Sznajd model thus is robust against geometrical disorder or rear-

rangement. If one convinces the neighbours only with some probability ; p,

and leaves them unchanged with probability 1�p, still a consensus is reached

albeit after a longer time. Advertising through mass media can be included

as a small probability � for a spin to point up independent of the usual rules.

Then at the end all spins are up even if initially 60 percent were down and

only 40 percent up; the � value needed to change the opinion of the whole

lattice goes to zero if the lattice size goes to in�nity and if Ochrombel' sim-

pli�cation (see below; [11]) is used.

More threatening to the basic concept of \United we stand, divided we

fall" is the idea of Ochrombel [11] to allow a single site, without any solidarity

with others, to convice the four neighbours. Thus we select randomly a site

and then automatically force its four neighbours to take the same orientation

as that site. (Both spin up and spin down can convince; if only spin up

would convince we would have the trivial infection process.) Again at the

end everybody agrees. However, there is no phase transition in this simpli�ed

model: The fraction of �nal �xed points having all spins up, in a simulation

of lattices, agrees with the initial fraction of up spins in each lattice.

The dynamics of the Sznajd model is quite similar to that of the Ising

model at low temperatures: An initially random distribution of spins forms

through spinodal decomposition large domains of up spins, surrounded by

large domains of down spins; see the �gure. The cluster growth follows a

5



scaling law [10] known since decades for Ising models: The typical cluster

radius increases as the square root of the time, and the distribution of cluster

radii is determined mainly by the ratio of the cluster radius to the typical

cluster radius. However, an Ising model at low but �nite temperatures shows

lots of isolated up spins in a sea of down spins, while the above Sznajd model

is deterministic, corresponds to zero temperature, and avoids such isolated

sites. (At zero temperature, the Ising model dislikes ordering [16].)

The Sznajd model was also combined [17] with the idea presented in the

Hegselman talk [21], that only people who have already a similar opinion

can be convinced; this requires more than two opinions and thus is similar

to Bernardes's work [10]. Thus, people can convince others only if the other

opinions from 1 to q di�er by at most one unit from the central opinion.

Thus when only opinions 1, 2, and 3 are available, those with opinions 2 can

convince all others, while those with opinions 1 or 3 can only convince those

with opinion 2. On the square lattice, one �nds then in general a consensus

for q = 3 but no longer for q = 4; on a triangular lattice this boundary shifts

to q = 5. Combined with di�usion of agents [2] on a lattice such that only an

agent which has just moved to another one can try to convince that agent, this

model interpolates between random graphs and nearest-neighbour lattices.

For q = 4 on the square lattice, usually one opinion wins, but another opinion

survives as a small minority. The opinion which was on second place at half

the time to reach the �xed point, at the end usually vanished completely

[17], just like some athletes prefer the third place over the second place.

An application of the Sznajd model to small-world networks was presented

by Elgazzar [13].

4 Politics

The most interesting application, in my opinion, was to political vote distri-

butions [10]. The number of candidates, getting a fraction v of all votes cast

for city councils in Brazil, varies as 1=v except for downward deviations at

large and small v. Ref.[10] gives real results from Minas Gerais (Brazil) and

compares them with suitably normalized votes from the following simulation:

Instead of only two choices each Sznajd voter has N choices, correspond-

ing to the N candidates. Bernardes replaces the square lattice by a Barabasi

network, a structure grown on the principle that well-connected people get

more easily new connections than others [15]. We start with �ve nodes all
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connected to each other. Then the network grows as follows: A newly added

node makes exactly 5 connections to already existing nodes; the probability

to select one such already existing node is proportional to the number of

connections this node had already before. This network is known to give a

wide distribution of the number k of neighbours, with the number of sites

having k neighbours decaying as 1=k3 for intermediate k. The comparison

of real and simulated votes shows them to be indistinguishable apart from

normalization.

5 Conclusion

This paper summarized simulations of the recently invented Sznajd model,

an alternative to the Ising model which has been applied to social phenomena

since decades. While in an Ising model, each site looks at its neighbours and

tries to follow them, in the Sznajd model sites which agree among each other

try to convince their neighbours. The most interesting application thus far

was the reproduction of the vote distribution in Brazil, Fig.3.

I thank Suzana Moss de Oliveira and Paulo Murilo C. de Oliveira for

hospitality at UFF in Niter�oi, Brazil, where most of this work was done

together with Brazilian collaborators.

6 Appendix

A short Fortran program is listed here; for questions ask stau�er@thp.uni-

koeln.de

The output starts with the initial parameters: 101 90000 1 1, then come

thousands of lines with intermediate results, and when the consensus was

found we stop with a histogram of relaxation times (one line only if nrun=1)

followed by, for example, 0.500000 0 1 0 giving the initial concentration,

the number of samples ending with all spins is down, the number of samples

ending with all spins is up, and the number of samples ending without

consensus. �231 < ibm < 231 are random integers, obtained by multiplication

with 16807. The L� L lattice is enlarged by two bu�er lines on each end to

allow simple helical boundary conditions.

7



program sznajd

c square lattice, with two neighbours convincing

parameter(L=101, L2=L*L, Ls=L2+4*L)

dimension nhist(0:32), neighb(0:3), is(Ls)

data maxstep/90000/,iseed/1/,nrun/100/,nhist/33*0/,p/0.4/

print *, L, maxstep, iseed, nrun

ibm=2*iseed-1

fact=L2/2147483648.0d0

ip=(2*p-1)*2147483648.0d0

neighb(0)= 1

neighb(1)=-1

neighb(2)= L

neighb(3)=-L

icountu=0

icountd=0

icount0=0

do 4 irun=1,nrun

do 1 i=1, Ls

ibm=ibm*16807

is(i)=-1

1 if(ibm.lt.ip) is(i)=1

do 2 itime=1,maxstep

m=0

do 3 k=2*L+1,L2+2*L

m=m+is(k)

5 ibm=ibm*16807

if(ibm.lt.0) ibm=(ibm+2147483647)+1

i=2*L+1+fact*ibm

if(i.le.2*L.or.i.gt.L2+2*L) goto 5

ibm=ibm*65539

j=i+neighb(ishft(ibm,-30))

ici=is(i)

if(ici.eq.is(j)) then

is(i-1 )=ici

is(i-L )=ici

is(i+L )=ici

is(i+1 )=ici

is(j-1 )=ici
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is(j-L )=ici

is(j+L )=ici

is(j+1 )=ici

endif

3 continue

if(iabs(m).eq.L2) goto 6

2 continue

print *, ' error, itime =', itime

icount0=icount0+1

6 ibin=alog(float(itime))/0.69315

nhist(ibin)=nhist(ibin)+1

if(m.eq.L2) icountu=icountu+1

if(m.eq.-L2)icountd=icountd+1

4 continue

do 7 ibin=1,32

7 if(nhist(ibin).ne.0) print *, 2**ibin, nhist(ibin)

print *, p, icountu, icountd, icount0

stop

end
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