

Nanotechnology for Life Sciences

Louis Tiefenauer

Paul Scherrer Institut

Laboratory for Micro- and Nanotechnology

Nanosciences Why is "nano" important in Life Sciences?

Medicine: Anatomic limitations e.g. Capillary pores diameter of 80 nm

Biochemistry: *Single molecules vs ensembles* e.g. Biorecognition ligand-receptor

Cell biology: *Investigation of subcellular functions* e.g. Cell surface interactions

Nano-Technology

Nanomaterials

Magnetite nanoparticles for in vivo diagnosis

Methods: AFM

Imaging and functionality of *individual* molecules

Nanostructures

Surfaces and devices for bioanalytics and research

PAUL SCHERRER INSTITUT

Nanoparticles for in vivo diagnostics

Contrast agent in Magnetic Resonance Imaging (MRI)

- Tumor

T2 + contrast agent

MRI image contrast

Tissue	T ₁ (s)	T ₂ (ms)	ρ
CSF	0.8 - 20	110 - 2000	70-230
White	0.76 - 1.08	61-100	70-90
Gray	1.09 - 2.15	61 - 109	85 - 125
Meninges	0.5 - 2.2	50 - 165	5 - 44
Muscle	0.95 - 1.82	20 - 67	45 - 90
Adipose	0.2 - 0.75	53 - 94	50 - 100

Spin echo Sequence

Weighting	TR Value	TE Value
T ₁	$< = T_1$	$< < T_2$
T ₂	$>> T_1$	$> = T_2$
ρ	>>T ₁	<< T ₂

PAUL SCHERRER INSTITUT

Nanoparticles used as a contrast agent

Localization of tumor tissues

- nanoparticles

+ nanoparticles

Results and problems

Inhomogeous distribution of nanoparticles in tumor tissues !

L. Tiefenauer et al. Mag. Res. Imag. 14, 391 (1996)

Nanoparticles for *in vivo* diagnostics

- Particle size as a small virus
- Anatomy limits the distribution of nanoparticles
- Surface coating determines their fate in vivo

,Nano"dimensions may be helpful

Force spectroscopy on *individual* molecules

NPF36 R. Ros PSI, collab. A. Plückthun UniZH & Güntherodt UniBS

Single chain Fv antibody-fragment

Surface preparation and analysis

Force spectroscopy method

Rupture force measurements

Kinetics and thermodynamics

$$K_D = \frac{k_{off}}{k_{on}}$$
 and $\Delta G = RT \ln K_D$

scFv proteins

$$k_{on}$$
: 0.3 - 11.9 μ M ⁻¹ s⁻¹

PAUL SCHERRER INSTITUT

Summary of the data

Antibody	F	k _{off}	K _D	$\Delta \mathbf{G}^{\#}$	∆H #
Туре	рN	10 ⁻³ s ⁻¹	nM	kJmol ⁻¹	kJmol ⁻¹
AB1	55	4.4	1.1	27.7	111.3
AB2	52	5.2	2.7	27.2	105.9
AB3	58	6.2	9.6	26.9	105.6
AB4	55	12.5	1.8	25.1	115.0
AB5	54	19	7.9	24.1	87.7
AB6	47	470	15.0	15.8	77.7
AB7	58	2.8	1.5	28.9	99.1
AB8	63	0.14	0.1	36.1	105.0
AB9	54	62	9.7	21.1	93.4

Paul Scherrer Institut • 5232 Villigen PSI

Laboratory for Micro- and Nanotechnology TL17

PAUL SCHERRER INSTITUT

Results: correlation of ΔF to off-rate

F. Schwesinger et al. *PNAS* <u>97</u>, 9972 (2000) R. Ros et al. *PNAS* <u>95</u>, 7402 (1998)

No correlation to free activation enthalpie ΔH^{\neq}

Dissociation under external force

$$F = \frac{k_B T}{x_{\beta}} \ln \frac{r_f x_{\beta}}{k_B T k_{off}}$$

E. Evans and K. Ritchie; Biophys.J.;72:1541-1555; 1997.

off-rates:FITC-E2 wt \rightarrow 0.003 ±4D5Flu wt \rightarrow 0.10 ± 0

 $0.003 \pm 0.002 \text{ s}^{-1} (0.004 \text{ s}^{-1})$ $0.10 \pm 0.05 \text{ s}^{-1^{--}} (0.062 \text{ s}^{-1})$

- Characteristics of *individual* molecules measured
- Correlations to ensembles of molecules
- Sensitivity of force spectroscopy method evaluated

"Nano"methods provide a new analytical quality

Nanostructures

Surface nanopatterning

Pattern definition: E-beam writing, stamping Material structures: topographical, chemical contrast Molecules: adsorption, covalent bonds

Nanodevices

Micro- and Nanostructures 3D-structures

Cell surface contact

Hypothesis: Nanostructures influence cell functions

Results on microstructures

SiO₂, PLL-PEG_cell repellent

-TiO₂, DDP, laminine cell attractant

PAUL SCHERRER INSTITUT

Nanopattern generation

PAUL SCHERRER INSTITUT

Nanostructuring on whole wafers :

Press

Cell reaction to nanostructures

Nanostructuring

- Mass production is needed for cell-surface investigations
- Material contrast can be used to achieve a chemical contrast

"Nano"structuring opens new capabilities to investigate cell-surface interactions

Nanotechnology in Life Sciences Summary

Medicine

Nanoparticles as contrast agent for in vivo diagnostics or therapy

Biochemistry

Single molecules investigation

Cell biology

Nanopatterns influence cell adhesion and function

Nanotechnology in Life Sciences

What can we learn?

Interdisciplinary: Physics, (bio)chemistry, biology, medicine

Scientific hypothesis: Multifactorial, molecule-based, surface structure-related

View: nanometer sized structures

Applications: Research > diagnostics > therapeutics

Acknowledgements

Nanomaterials

Guido Kühne, Andreas Tschirky, J.-J. Hefti

AFM

Robert Ros, Falk Schwesinger, Thorsten Strunz

Nanostructures

Brigitte Ketterer, Laura Heyderman, Marcus Textor

Funding

SNSF, KTI